Unknown

Dataset Information

0

Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic maintenance of cell polarity.


ABSTRACT: Lipid asymmetry at the plasma membrane is essential for such processes as cell polarity, cytokinesis and phagocytosis. Here we find that a lipid flippase complex, composed of Lem3, Dnf1 or Dnf2, has a role in the dynamic recycling of the Cdc42 GTPase, a key regulator of cell polarity, in yeast. By using quantitative microscopy methods, we show that the flippase complex is required for fast dissociation of Cdc42 from the polar cortex by the guanine nucleotide dissociation inhibitor. A loss of flippase activity, or pharmacological blockage of the inward flipping of phosphatidylethanolamine, a phospholipid with a neutral head group, disrupts Cdc42 polarity maintained by guanine nucleotide dissociation inhibitor-mediated recycling. Phosphatidylethanolamine flipping may reduce the charge interaction between a Cdc42 carboxy-terminal cationic region with the plasma membrane inner leaflet, enriched for the negatively charged lipid phosphatidylserine. Using a reconstituted system with supported lipid bilayers, we show that the relative composition of phosphatidylethanolamine versus phosphatidylserine directly modulates Cdc42 extraction from the membrane by guanine nucleotide dissociation inhibitor.

SUBMITTER: Das A 

PROVIDER: S-EPMC3534761 | biostudies-literature | 2012 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic maintenance of cell polarity.

Das Arupratan A   Slaughter Brian D BD   Unruh Jay R JR   Bradford William D WD   Alexander Richard R   Rubinstein Boris B   Li Rong R  

Nature cell biology 20120219 3


Lipid asymmetry at the plasma membrane is essential for such processes as cell polarity, cytokinesis and phagocytosis. Here we find that a lipid flippase complex, composed of Lem3, Dnf1 or Dnf2, has a role in the dynamic recycling of the Cdc42 GTPase, a key regulator of cell polarity, in yeast. By using quantitative microscopy methods, we show that the flippase complex is required for fast dissociation of Cdc42 from the polar cortex by the guanine nucleotide dissociation inhibitor. A loss of fli  ...[more]

Similar Datasets

| S-EPMC3057128 | biostudies-literature
| S-SCDT-EMBOJ-2021-107915 | biostudies-other
| S-EPMC6373741 | biostudies-literature
| S-EPMC7383378 | biostudies-literature
| S-EPMC4602047 | biostudies-literature
| S-EPMC4315245 | biostudies-literature