Optical and electrical recordings from isolated coronary-perfused ventricular wedge preparations.
Ontology highlight
ABSTRACT: The electrophysiological heterogeneity that exists across the ventricular wall in the mammalian heart has long been recognized, but remains an area that is incompletely understood. Experimental studies of the mechanisms of arrhythmogenesis in the whole heart often examine the epicardial surface in isolation and thereby disregard transmural electrophysiology. Significant heterogeneity exists in the electrophysiological properties of cardiomyocytes isolated from different layers of the ventricular wall, and given that regional heterogeneities of membrane repolarization properties can influence the electrophysiological substrate for re-entry, the diversity of cell types and characteristics spanning the ventricular wall is important in the study of arrhythmogenesis. For these reasons, coronary-perfused left ventricular wedge preparations have been developed to permit the study of transmural electrophysiology in the intact ventricle. Since the first report by Yan and Antzelevitch in 1996, electrical recordings from the transmural surface of canine wedge preparations have provided a wealth of data regarding the cellular basis for the electrocardiogram, the role of transmural heterogeneity in arrhythmogenesis, and differences in the response of the different ventricular layers to drugs and neurohormones. Use of the wedge preparation has since been expanded to other species and more recently it has also been widely used in optical mapping studies. The isolated perfused wedge preparation has become an important tool in cardiac electrophysiology. In this review, we detail the methodology involved in recording both electrical and optical signals from the coronary-perfused wedge preparation and review the advances in cardiac electrophysiology achieved through study of the wedge.
SUBMITTER: Di Diego JM
PROVIDER: S-EPMC3535682 | biostudies-literature | 2013 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA