Vibrio cholerae classical biotype is converted to the viable non-culturable state when cultured with the El Tor biotype.
Ontology highlight
ABSTRACT: A unique event in bacterial epidemiology was the emergence of the El Tor biotype of Vibrio cholerae O1 and the subsequent rapid displacement of the existing classical biotype as the predominant cause of epidemic cholera. We demonstrate that when the El Tor and classical biotypes were cocultured in standard laboratory medium a precipitous decline in colony forming units (CFU) of the classical biotype occurred in a contact dependent manner. Several lines of evidence including DNA release, microscopy and flow cytometric analysis indicated that the drastic reduction in CFU of the classical biotype in cocultures was not accompanied by lysis, although when the classical biotype was grown individually in monocultures, lysis of the cells occurred concomitant with decrease in CFU starting from late stationary phase. Furthermore, uptake of a membrane potential sensitive dye and protection of genomic DNA from extracellular DNase strongly suggested that the classical biotype cells in cocultures retained viability in spite of loss of culturability. These results suggest that coculturing the classical biotype with the El Tor biotype protects the former from lysis allowing the cells to remain viable in spite of the loss of culturability. The stationary phase sigma factor RpoS may have a role in the loss of culturability of the classical biotype in cocultures. Although competitive exclusion of closely related strains has been reported for several bacterial species, conversion of the target bacterial population to the viable non-culturable state has not been demonstrated previously and may have important implications in the evolution of bacterial strains.
SUBMITTER: Pradhan S
PROVIDER: S-EPMC3541145 | biostudies-literature | 2013
REPOSITORIES: biostudies-literature
ACCESS DATA