Ontology highlight
ABSTRACT: Background
Neural tube defects (NTDs) are one of the most common birth defects caused by a combination of genetic and environmental factors. Currently, little is known about the genetic basis of NTDs although up to 70% of human NTDs were reported to be attributed to genetic factors. Here we performed genome-wide copy number variants (CNVs) detection in a cohort of Chinese NTD patients in order to exam the potential role of CNVs in the pathogenesis of NTDs.Methods
The genomic DNA from eighty-five NTD cases and seventy-five matched normal controls were subjected for whole genome CNVs analysis. Non-DGV (the Database of Genomic Variants) CNVs from each group were further analyzed for their associations with NTDs. Gene content in non-DGV CNVs as well as participating pathways were examined.Results
Fifty-five and twenty-six non-DGV CNVs were detected in cases and controls respectively. Among them, forty and nineteen CNVs involve genes (genic CNV). Significantly more non-DGV CNVs and non-DGV genic CNVs were detected in NTD patients than in control (41.2% vs. 25.3%, p<0.05 and 37.6% vs. 20%, p<0.05). Non-DGV genic CNVs are associated with a 2.65-fold increased risk for NTDs (95% CI: 1.24-5.87). Interestingly, there are 41 cilia genes involved in non-DGV CNVs from NTD patients which is significantly enriched in cases compared with that in controls (24.7% vs. 9.3%, p<0.05), corresponding with a 3.19-fold increased risk for NTDs (95% CI: 1.27-8.01). Pathway analyses further suggested that two ciliogenesis pathways, tight junction and protein kinase A signaling, are top canonical pathways implicated in NTD-specific CNVs, and these two novel pathways interact with known NTD pathways.Conclusions
Evidence from the genome-wide CNV study suggests that genic CNVs, particularly ciliogenic CNVs are associated with NTDs and two ciliogenesis pathways, tight junction and protein kinase A signaling, are potential pathways involved in NTD pathogenesis.
SUBMITTER: Chen X
PROVIDER: S-EPMC3547935 | biostudies-literature | 2013
REPOSITORIES: biostudies-literature
Chen Xiaoli X Shen Yiping Y Gao Yonghui Y Zhao Huizhi H Sheng Xiaoming X Zou Jizhen J Lip Va V Xie Hua H Guo Jin J Shao Hong H Bao Yihua Y Shen Jianliang J Niu Bo B Gusella James F JF Wu Bai-Lin BL Zhang Ting T
PloS one 20130117 1
<h4>Background</h4>Neural tube defects (NTDs) are one of the most common birth defects caused by a combination of genetic and environmental factors. Currently, little is known about the genetic basis of NTDs although up to 70% of human NTDs were reported to be attributed to genetic factors. Here we performed genome-wide copy number variants (CNVs) detection in a cohort of Chinese NTD patients in order to exam the potential role of CNVs in the pathogenesis of NTDs.<h4>Methods</h4>The genomic DNA ...[more]