Accumulation of intraneuronal ?-amyloid 42 peptides is associated with early changes in microtubule-associated protein 2 in neurites and synapses.
Ontology highlight
ABSTRACT: Pathologic aggregation of ?-amyloid (A?) peptide and the axonal microtubule-associated protein tau protein are hallmarks of Alzheimer's disease (AD). Evidence supports that A? peptide accumulation precedes microtubule-related pathology, although the link between A? and tau remains unclear. We previously provided evidence for early co-localization of A?42 peptides and hyperphosphorylated tau within postsynaptic terminals of CA1 dendrites in the hippocampus of AD transgenic mice. Here, we explore the relation between A? peptide accumulation and the dendritic, microtubule-associated protein 2 (MAP2) in the well-characterized amyloid precursor protein Swedish mutant transgenic mouse (Tg2576). We provide evidence that localized intraneuronal accumulation of A?42 peptides is spatially associated with reductions of MAP2 in dendrites and postsynaptic compartments of Tg2576 mice at early ages. Our data support that reduction in MAP2 begins at sites of A?42 monomer and low molecular weight oligomer (M/LMW) peptide accumulation. Cumulative evidence suggests that accumulation of M/LMW A?42 peptides occurs early, before high molecular weight oligomerization and plaque formation. Since synaptic alteration is the best pathologic correlate of cognitive dysfunction in AD, the spatial association of M/LMW A? peptide accumulation with pathology of MAP2 within neuronal processes and synaptic compartments early in the disease process reinforces the importance of intraneuronal A? accumulation in AD pathogenesis.
SUBMITTER: Takahashi RH
PROVIDER: S-EPMC3553177 | biostudies-literature | 2013
REPOSITORIES: biostudies-literature
ACCESS DATA