Unknown

Dataset Information

0

Bayesian computation via empirical likelihood.


ABSTRACT: Approximate Bayesian computation has become an essential tool for the analysis of complex stochastic models when the likelihood function is numerically unavailable. However, the well-established statistical method of empirical likelihood provides another route to such settings that bypasses simulations from the model and the choices of the approximate Bayesian computation parameters (summary statistics, distance, tolerance), while being convergent in the number of observations. Furthermore, bypassing model simulations may lead to significant time savings in complex models, for instance those found in population genetics. The Bayesian computation with empirical likelihood algorithm we develop in this paper also provides an evaluation of its own performance through an associated effective sample size. The method is illustrated using several examples, including estimation of standard distributions, time series, and population genetics models.

SUBMITTER: Mengersen KL 

PROVIDER: S-EPMC3557074 | biostudies-literature | 2013 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bayesian computation via empirical likelihood.

Mengersen Kerrie L KL   Pudlo Pierre P   Robert Christian P CP  

Proceedings of the National Academy of Sciences of the United States of America 20130107 4


Approximate Bayesian computation has become an essential tool for the analysis of complex stochastic models when the likelihood function is numerically unavailable. However, the well-established statistical method of empirical likelihood provides another route to such settings that bypasses simulations from the model and the choices of the approximate Bayesian computation parameters (summary statistics, distance, tolerance), while being convergent in the number of observations. Furthermore, bypa  ...[more]

Similar Datasets

| S-EPMC4395844 | biostudies-literature
| S-EPMC7612173 | biostudies-literature
| S-EPMC9140259 | biostudies-literature
| S-EPMC3547661 | biostudies-literature
| S-EPMC9541316 | biostudies-literature
| S-EPMC6805134 | biostudies-literature
| S-EPMC6217850 | biostudies-literature
| S-EPMC3716296 | biostudies-literature
| S-EPMC3887322 | biostudies-literature
| S-EPMC4542106 | biostudies-literature