Project description:To determine characteristics of natural transmission of Babesia sp. EU1 and B. divergens by adult Ixodes ricinus ticks, we examined tick salivary gland contents. We found that I. ricinus is a competent vector for EU1 and that their sporozoites directly invade erythrocytes. We conclude that EU1 is naturally transmitted by I. ricinus.
Project description:Ticks are medically important vectors of infectious diseases that are able to transmit pathogens to humans and animals. Tick-borne diseases represent a major health concern, posing an increasing risk to the public health during the last century and affecting millions of people. The aim of the current study was to provide epidemiological data regarding the presence of certain tick-borne pathogens in ticks feeding on humans in Romania. Overall, 522 Ixodes ricinus ticks collected from humans were screened for six pathogens: Borrelia spp., Neoehrlichia mikurensis, Babesia spp., Coxiella spp., Bartonella spp., and Francisella tularensis. Ticks attached to humans were collected between 2013-2015 in Cluj County, Romania. Conventional, nested and quantitative PCR were used to detect specific genetic sequences of each pathogen. For identifying the infectious agents, positive samples were sequenced. The infection prevalence was 21.07% from which 8.18% were mixed infections. The detected agents were Borrelia spp., N. mikurensis and Babesia spp. The present data reveal the endemic occurrence of potentially zoonotic pathogens in Romania. Revealing the current distribution of tick-borne pathogens in ticks collected from humans may provide new insights in understanding the complex ecology of tick-borne diseases and enlightens current knowledge about the infection prevalence at local, regional and national levels.
Project description:In Europe, Ixodes ricinus is the vector of many pathogens of medical and veterinary relevance, among them Borrelia burgdorferi sensu lato and tick-borne encephalitis virus, which have been the subject of numerous investigations. Less is known about the occurrence of emerging tick-borne pathogens like Rickettsia spp., Babesia spp., "Candidatus Neoehrlichia mikurensis," and Anaplasma phagocytophilum in questing ticks. In this study, questing nymph and adult I. ricinus ticks were collected at 11 sites located in Western Switzerland. A total of 1,476 ticks were analyzed individually for the simultaneous presence of B. burgdorferi sensu lato, Rickettsia spp., Babesia spp., "Candidatus Neoehrlichia mikurensis," and A. phagocytophilum. B. burgdorferi sensu lato, Rickettsia spp., and "Candidatus Neoehrlichia mikurensis" were detected in ticks at all sites with global prevalences of 22.5%, 10.2%, and 6.4%, respectively. Babesia- and A. phagocytophilum-infected ticks showed a more restricted geographic distribution, and their prevalences were lower (1.9% and 1.5%, respectively). Species rarely reported in Switzerland, like Borrelia spielmanii, Borrelia lusitaniae, and Rickettsia monacensis, were identified. Infections with more than one pathogenic species, involving mostly Borrelia spp. and Rickettsia helvetica, were detected in 19.6% of infected ticks. Globally, 34.2% of ticks were infected with at least one pathogen. The diversity of tick-borne pathogens detected in I. ricinus in this study and the frequency of coinfections underline the need to take them seriously into consideration when evaluating the risks of infection following a tick bite.
Project description:Ixodes ricinus has the potential to transmit zoonotic pathogens to humans and domestic animals. The feeding I. ricinus (n = 1737) collected from 49 Shetland ponies and questing ones from vegetation (n = 371) were tested for the presence and differentiation of the bacterial species. DNA of I. ricinus ticks was examined with PCR and sequencing analysis to identify species of Borrelia burgdorferi sensu lato (Bbsl), Anaplasma phagocytophilum and Rickettsia spp. Altogether, 24.3 % I. ricinus of the infested horses and 12.4 % ticks from vegetation carried at least one pathogen species. Horse-feeding ticks (19.2 %) were significantly more frequently infected with Borrelia spp. than questing ticks (4.8 %). Among Bbsl species, in I. ricinus infesting ponies, B. garinii, B. afzelii, B. burgdorferi sensu stricto, B. valaisiana and B. lusitanie and one species, B. miyamotoi related to relapsing fever group, were detected. The 73 flaB gene sequences of Borrelia obtained from feeding I. ricinus have been deposited in GenBank. Among Rickettsia species, two were identified: R. helvetica which was dominant and R. monacensis. Infections with more than one pathogenic species, involving mostly Bbsl and R. helvetica were detected in 6.3 % of infected ticks collected from horses. Shetland ponies may play an important role in the epidemiological cycle of Bbsl and probably could contribute to the natural cycle of A. phagocytophilum and R. helvetica as host for infected ticks. The awareness about these infectious agents in ticks from ponies might be an important criterion for the risk assessment of human diseases, especially as these animals are maintained for recreational purposes.
Project description:In order to investigate the possible role of Ixodes ricinus as a vector of zoonotic Babesia microti infection in Europe, a European rodent isolate (HK) and a zoonotic American isolate (GI) were studied in transmission experiments. PCR detected B. microti in the blood and spleens of infected gerbils (Meriones unguiculatus) and also in laboratory-induced infections of I. ricinus ticks. B. microti DNA was detected by PCR in all pooled samples of nymphs and the majority of adults that had fed as larvae and nymphs, respectively, on gerbils with acute infection of the European isolate, confirming that I. ricinus could serve as a vector in Europe. The American isolate, GI, proved to be equally infective for larval and nymphal I. ricinus as the HK strain, despite a very different appearance in gerbil erythrocytes. Nymphs infected with the HK and GI strains readily infected gerbils. In contrast to the finding in acute infections, ticks that fed on gerbils with chronic infections of HK and GI did not become infected. It was also found that the HK strain was not transmitted transovarially. The finding that a B. microti strain (GI) from a distant geographical region (United States) can infect and be transmitted by I. ricinus suggests that other European B. microti strains, in addition to the HK strain used here, are probably infective for I. ricinus, supporting the view that infection of humans with European B. microti may be a regular occurrence.
Project description:In Europe, ixodid ticks are important arthropod vectors of human and animal pathogens, but comprehensive studies of the prevalence of all relevant pathogens in Central Europe are scarce. As a result of ecological changes, the incidences of tick-borne infections are expected to increase. In this study, 1,394 nymphal and adult Ixodes ricinus ticks sampled monthly during the active season from 33 ecologically distinct collection sites throughout Luxembourg were screened for all human tick-borne pathogens relevant in Central Europe. Species were identified by sequence analysis of detection PCR amplicons. Mean infection rates of ticks were 11.3% for Borrelia burgdorferi sensu lato, 5.1% for Rickettsia sp., 2.7% for Babesia sp., and 1.9% for Anaplasma phagocytophilum. No tick was found to be infected with Coxiella sp., Francisella tularensis subsp., or Tick-borne encephalitis virus (TBEV). A total of 3.2% of ticks were infected with more than one pathogen species, including mixed Borrelia infections (1.5%). Seasonal variations of tick infection rates were observed for Borrelia, Babesia, and Anaplasma, possibly reflecting a behavioral adaptation strategy of questing ticks. A positive correlation between the grade of urbanization and Borrelia infection rate of ticks was observed, suggesting an established urban zoonotic cycle. We also found Hepatozoon canis (0.1%) and Bartonella henselae (0.3%), which so far have not been found in questing Ixodes ricinus ticks in Central Europe.
Project description:Birds are important hosts for the first life stages of the Ixodes ricinus tick and they can transport their parasites over long distances. The aim of this study was to investigate the prevalence of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Neoehrlichia mikurensis and Rickettsia helvetica in ticks collected from migratory birds in Norway. A total of 815 Ixodes ricinus ticks from 216 birds trapped at Lista Bird Observatory in southern Norway during spring and autumn migration in 2008 were analysed by real-time PCR. B. burgdorferi s. l. was the most prevalent pathogen, detected in 6.1% of the ticks. The prevalence of N. mikurensis, A. phagocytophilum and R. helvetica was 1.2%, 0.9% and 0.4% respectively. In addition, one sample (0.1%) was positive for B. miyamotoi. In total, 8.2% of the ticks were infected with at least one pathogen. Co-infection with B. burgdorferi s. l. and N. mikurensis or A. phagocytophilum was found in 6.0% of the infected ticks. Our results show that all the known major tick-borne bacterial pathogens in Norway are subject to transport by migratory birds, potentially allowing spread to new areas. Our study showed a surprisingly high number of samples with PCR inhibition (57%). These samples had been extracted using standard methodology (phenol-chloroform extraction). This illustrates the need for inhibition controls to determine true prevalence rates.
Project description:BackgroundLyme borreliosis and other tick-borne diseases emerge from increased interactions between humans, other animals, and infected ticks. The risk of acquiring a tick-borne infection varies across space and time, so knowledge of the occurrence and prevalence of pathogens in ticks can facilitate disease diagnosis in a specific area and the implementation of mitigation measures and awareness campaigns. Here we identify the occurrence and prevalence of several pathogens in Ixodes ricinus ticks in Wester Ross, Northwest Scotland, a region of high tourism and tick exposure, yet data-poor in terms of tick-borne pathogens.MethodsQuesting I. ricinus nymphs (n = 2828) were collected from 26 sites in 2018 and 2019 and tested for the presence of tick-borne pathogens using PCR-based methods. Prevalence was compared with other regions of Scotland, England, Wales, and the Netherlands.ResultsAnaplasma phagocytophilum (4.7% prevalence), Borrelia burgdorferi sensu lato (s.l.) (2.2%), Babesia from clade X (0.2%), Rickettsia helvetica (0.04%), and Spiroplasma ixodetis (0.4%) were detected, but no Neoehrlichia mikurensis, Borrelia miyamotoi, or Babesia microti. Typing of A. phagocytophilum using a fragment of the GroEL gene identified the presence of both ecotype I and ecotype II. Genospecies identification of Borrelia burgdorferi s.l. revealed B. afzelii (53% of infected nymphs), B. garinii (9%), B. burgdorferi sensu stricto (7%), and B. valaisiana (31%). We found similar prevalence of A. phagocytophilum in Wester Ross as in the Netherlands, but higher than in other parts of Great Britain. We found lower B. burgdorferi s.l. prevalence than in England or the Netherlands, and similar to some other Scottish studies. We found higher prevalence of B. valaisiana and lower prevalence of B. garinii than in other Scottish studies. We found S. ixodetis at much lower prevalence than in the Netherlands, and R. helvetica at much lower prevalence than in England and the Netherlands.ConclusionsAs far as we know, this is the first description of S. ixodetis in Great Britain. The results are relevant for disease surveillance and management for public and veterinary health. The findings can also aid in designing targeted public health campaigns and in raising awareness among outdoor recreationists and professionals.
Project description:Background:Ticks can survive long periods without feeding but, when feeding, ingest large quantities of blood, resulting in a more than 100-fold increase of body volume. We study morphological adaptations to changes in opisthosoma volume during feeding in the castor bean tick, Ixodes ricinus. We aim to understand the functional morphological features that accommodate enormous changes in volume changes. Methods:Using light and electron microscopy, we compare the cuticle and epidermis of the alloscutum, the epithelium of the midgut diverticula, and the tracheae of adult female ticks when fasting, semi-engorged, and fully engorged. Results:Our results add to an existing body of knowledge that the area of the epidermis increases by cellular differentiation, cellular hypertrophy, and changes in the shape of epithelial cells from pseudostratified to single layered prismatic in semi-engorged ticks, and to thin squamous epithelium in fully engorged ticks. We did not find evidence for cell proliferation. The midgut diverticula accommodate the volume increase by cellular hypertrophy and changes in cell shape. In fully engorged ticks, the epithelial cells of the midgut diverticula are stretched to an extremely thin, squamous epithelium. Changes in size and shape (and cell divisions) contribute to the accommodation of volume changes. Tracheae do not increase in size, but extend in length, thus following the volume changes of the opisthosoma in feeding ticks to secure oxygen supply to the internal organs. Conclusions:Changes of epithelial tissue configuration in the epidermis and the midgut diverticula are described as important components of the morphological response to feeding in ticks. We provide evidence for a previously unknown mechanism hosted in the endocuticle of the tracheae that allows the tracheae of castor bean ticks to expand when the body volume increases and the distance between the respiratory spiracle and the oxygen demanding tissue enlarges. This is the first report of expandable tracheae in arthropods.