Project description:Crimean-Congo hemorrhagic fever virus was detected in ticks removed from migratory birds in Morocco. This finding demonstrates the circulation of this virus in northwestern Africa and supports the hypothesis that the virus can be introduced into Europe by infected ticks transported from Africa by migratory birds.
Project description:We investigated migratory birds' role in spreading Crimean-Congo hemorrhagic fever virus (CCHFV) through attached ticks. We detected CCHFV RNA in ticks on migratory birds in Turkey. Two isolates showed similarity with CCHFV genotype 4, suggesting a role for ticks in CCHFV epidemics in Turkey and spread of CCHFV by birds.
Project description:Crimean Congo hemorrhagic fever virus (CCHFV) is one of the most severe viral zoonozes. It is prevalent throughout Africa, Asia and southern Europe. Limited availability of sequence data has hindered phylogeographic studies. The complete genomic sequence of all three segments of 14 Crimean Congo hemorrhagic fever virus strains isolated from 1958-2000 in Russia, Central Asia and Africa was identified. Each genomic segment was independently subjected to continuous Bayesian phylogeographic analysis. The origin of each genomic segment was traced to Africa about 1,000-5,000 years ago. The virus was first introduced to South and Central Asia in the Middle Ages, and then spread to China, India and Russia. Reverse transfers of genomic segments from Asia to Africa were also observed. The European CCHFV genotype V was introduced to Europe via the Astrakhan region in South Russia 280-400 years ago and subsequently gradually spread westward in Russia, to Turkey and the Balkans less than 150 years ago. Only a few recombination events could be suggested in S and L genomic segments, while segment reassortment was very common. The median height of a non-reassortant phylogenetic tree node was 68-156 years. There were reassortment events within the European CCHFV lineage, but not with viruses from other locations. Therefore, CCHFV in Europe is a recently emerged zoonosis that represents a spillover from the global gene pool.
Project description:The Crimean-Congo hemorrhagic fever virus (CCHFV), a member of the genus Orthonairovirus and family Nairoviridae, is transmitted by ticks and causes severe hemorrhagic disease in humans. To study the epidemiology of CCHFV in different ecosystems in Xinjiang, China, a total of 58,932 ticks were collected from Tarim Basin, Junggar Basin, Tianshan Mountain, and Altai Mountain from 2014 to 2017. Hyalomma asiaticum asiaticum was the dominant tick species in Tarim and Junggar basins, whereas Dermacentor nuttalli and Hyalomma detritum were found in Tianshan Mountain and Altai Mountain, respectively. Reverse transcription-polymerase chain reaction of the CCHFV small (S) genome segment was used for the molecular detection. The CCHFV-positive percentage was 5.26%, 6.85%, 1.94%, and 5.56% in Tarim Basin, Junggar Basin, Tianshan Mountain, and Altai Mountain, respectively. Sequences of the S segment were used for phylogenetic analysis and the results showed that the newly identified CCHFV strains belonged to two clades. Our study confirms that H. asiaticum asiaticum is the major vector of CCHFV in desert habitats which is consistent with previous studies, and also suggests that H. detritum and D. nuttalli are emerging vectors for CCHFV in Xinjiang. Moreover, this study reports the presence of CCHFV in the mountain habitat of Xinjiang for the first time, suggesting that future surveillance of CCHFV should also include mountainous areas.
Project description:During 2013-2014, we collected 1,926 serum samples from humans and 4,583 ticks (Hyalomma asiaticum or Dermacentor nuttalli) in select regions of Mongolia to determine the risk for Crimean-Congo hemorrhagic fever virus (CCHFV) infection among humans in this country. Testing of human serum samples by ELISA demonstrated an overall CCHFV antibody prevalence of 1.4%; Bayankhongor Province had the highest prevalence, 2.63%. We pooled and analyzed tick specimens by real-time reverse transcription PCR; 1 CCHFV-positive H. asiaticum tick pool from Ömnögovi was identified. In phylogenetic analyses, the virus's partial small segment clustered with CCHFV isolates from Central Asia, and the complete medium segment grouped with CCHFV isolates from Africa, Asia, and the Middle East. This study confirms CCHFV endemicity in Mongolia and provides information on risk for CCHFV infection. Further research is needed to better define the risk for CCHFV disease to improve risk mitigation, diagnostics, and surveillance.
Project description:Two cases of Crimean-Congo hemorrhagic fever were reported in Spain during 2016. We obtained the virus from a patient sample and characterized its full genomic sequence. Phylogenetic analysis indicated that the virus corresponds to the African genotype III, which includes viruses previously found in West and South Africa.
Project description:To investigate Crimean-Congo hemorrhagic fever virus in Turkey, we conducted a seroepidemiologic survey during January-April 2009. Seroprevalence of infection was 10% in a sample from an outbreak region and increased with patient age, indicating that the virus had been previously present in Turkey. We also estimated that 88% of infections were subclinical.
Project description:Crimean-Congo hemorrhagic fever virus (CCHFV) is a biosafety level-4 pathogen requiring urgent research and development efforts. The glycoproteins of CCHFV, Gn and Gc, are considered to play multiple roles in the viral life cycle by interactions with host cells; however, these interactions remain largely unclear to date. Here, we analyzed the cellular interactomes of CCHFV glycoproteins and identified 45 host proteins as high-confidence Gn/Gc interactors. These host molecules are involved in multiple cellular biological processes potentially associated with the physiological actions of the viral glycoproteins. Then, we elucidated the role of a representative cellular protein, HAX1. HAX1 interacts with Gn by its C-terminus, while its N-terminal region leads to mitochondrial localization. By the strong interaction, HAX1 sequestrates Gn to mitochondria, thus depriving Gn of its normal Golgi localization that is required for functional glycoprotein-mediated progeny virion packaging. Consistently, the inhibitory activity of HAX1 against viral packaging and hence propagation was further elucidated in the contexts of pseudotyped and authentic CCHFV infections in cellular and animal models. Together, the findings provide a systematic CCHFV Gn/Gc-cell protein-protein interaction map, but also unravel a HAX1/mitochondrion-associated host antiviral mechanism, which may facilitate further studies on CCHFV biology and therapeutic approaches.