Role for serine protease HtrA (DegP) of Streptococcus pyogenes in the biogenesis of virulence factors SpeB and the hemolysin streptolysin S.
Ontology highlight
ABSTRACT: The serine protease HtrA is involved in the folding and maturation of secreted proteins, as well as in the degradation of proteins that misfold during secretion. Depletion of HtrA has been shown to affect the sensitivity of many organisms to thermal and environmental stresses, as well as being essential for virulence in many pathogens. In the present study, we compared the behaviors of several different HtrA mutants of the gram-positive pathogen Streptococcus pyogenes (group A streptococcus). Consistent with prior reports, insertional inactivation of htrA, the gene that encodes HtrA, resulted in a mutant that grew poorly at 37 degrees C. However, an identical phenotype was observed when a similar polar insertion was placed immediately downstream of htrA in the streptococcal chromosome, suggesting that the growth defect of the insertion mutant was not a direct result of insertional inactivation of htrA. This conclusion was supported by the observation that a nonpolar deletion mutation of htrA did not produce the growth defect. However, this mutation did affect the production of several secreted virulence factors whose biogenesis requires extensive processing. For the SpeB cysteine protease, the loss of HtrA was associated with a failure to proteolytically process the zymogen to an active protease. For the streptolysin S hemolysin, a dramatic increase in hemolytic activity resulted from the depletion of HtrA. Interestingly, HtrA-deficient mutants were not attenuated in a murine model of subcutaneous infection. These data add to the growing body of information that implies an important role for HtrA in the biogenesis of secreted proteins in gram-positive bacteria.
SUBMITTER: Lyon WR
PROVIDER: S-EPMC356025 | biostudies-literature | 2004 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA