Elucidating combinatorial histone modifications and crosstalks by coupling histone-modifying enzyme with biotin ligase activity.
Ontology highlight
ABSTRACT: Histone post-translational modifications (PTMs) often form complex patterns of combinations and cooperate to specify downstream biological processes. In order to systemically analyse combinatorial PTMs and crosstalks among histone PTMs, we have developed a novel nucleosome purification method called Biotinylation-assisted Isolation of CO-modified Nucleosomes (BICON). This technique is based on physical coupling of the enzymatic activity of a histone-modifying enzyme with in vivo biotinylation by the biotin ligase BirA, and using streptavidin to purify the co-modified nucleosomes. Analysing the nucleosomes isolated by BICON allows the identification of PTM combinations that are enriched on the modified nucleosomes and function together within the nucleosome context. We used this new approach to study MSK1-mediated H3 phosphorylation and found that MSK1 not only directly phosphorylated H3, but also induced hyperacetylation of both histone H3 and H4 within the nucleosome. Moreover, we identified a novel crosstalk pathway between H3 phosphorylation and H4 acetylation on K12. Involvement of these acetyl marks in MSK1-mediated transcription was further confirmed by chromatin immunoprecipitation assays, thus validating the biological relevance of the BICON results. These studies serve as proof-of-principle for this new technical approach, and demonstrate that BICON can be further adapted to study PTMs and crosstalks associated with other histone-modifying enzymes.
Project description:Histone modifications are associated with alternative splicing. It has been suggested that histone modifications act in combinational patterns in gene expression regulation. However, how they interact with each other and what is their casual relationships in the process of RNA splicing remain unclear. In this study, the combinatorial patterns of 38 kinds of histone modifications in the exon skipping event of the CD4+ T cell were analyzed by constructing Bayesian networks. Distinct combinatorial patterns of histone modifications that illustrating their casual relationships were observed in excluded/included exons and the surrounding intronic regions. The Bayesian networks also indicate that some histone modifications directly correlate with RNA splicing. We anticipate that this work could provide novel insights into the effects of histone modifications on RNA splicing regulation.
Project description:During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies.
Project description:The study of histone modifications and their interaction with effector modules/proteins has attracted increasing attention in recent years. Accumulating evidence indicates that epigenetic regulation, which involves post-translational modification on histones and DNAs or the participation of RNAs, plays an important role in many cellular processes. Histone modifications can function individually but are also capable of functioning combinatorially as a pattern. Recently, much more attention has focused on interpreting combined histone patterns by their downstream effectors. Structure/function-based studies on paired module-mediated histone cross-talk have greatly enhanced our understanding of the plasticity of the "histone code" hypothesis.
Project description:Increasing evidence suggests that histone posttranslational modifications (PTMs) function in a combinatorial fashion to regulate the diverse activities associated with chromatin. Yet how these patterns of histone PTMs influence the adapter proteins known to bind them is poorly understood. In addition, how histone-specific antibodies are influenced by these same patterns of PTMs is largely unknown. Here we examine the binding properties of histone-specific antibodies and histone-interacting proteins using peptide arrays containing a library of combinatorially modified histone peptides. We find that modification-specific antibodies are more promiscuous in their PTM recognition than expected and are highly influenced by neighboring PTMs. Furthermore, we find that the binding of histone-interaction domains from BPTF, CHD1, and RAG2 to H3 lysine 4 trimethylation is also influenced by combinatorial PTMs. These results provide further support for the histone code hypothesis and raise specific concerns with the quality of the currently available modification-specific histone antibodies.
Project description:The cell cycle is a highly regulated and evolutionary conserved process that results in the duplication of cell content and the equal distribution of the duplicated chromosomes into a pair of daughter cells. Histones are fundamental structural components of chromatin in eukaryotic cells, and their post-translational modifications (PTMs) benchmark DNA readout and chromosome condensation. Aberrant regulation of the cell cycle associated with dysregulation of histone PTMs is the cause of critical diseases such as cancer. Monitoring changes of histone PTMs could pave the way to understanding the molecular mechanisms associated with epigenetic regulation of cell proliferation. Previously, our lab established a novel middle-down workflow using porous graphitic carbon (PGC) as a stationary phase to analyze histone PTMs, which utilizes the same reversed-phase chromatography for gradient separation as canonical proteomics coupled with online mass spectrometry (MS). Here, we applied this novel workflow for high-throughput analysis of histone modifications of H3.1 and H3.2 during the cell cycle. Collectively, we identified 1133 uniquely modified canonical histone H3 N-terminal tails. Consistent with previous findings, histone H3 phosphorylation increased significantly during the mitosis (M) phase. Histone H3 variant-specific and cell-cycle-dependent expressions of PTMs were observed, underlining the need to not combine H3.1 and H3.2 together as H3. We confirmed previously known H3 PTM crosstalk (e.g., K9me-S10ph) and revealed new information in this area as well. These findings imply that the combinatorial PTMs play a role in cell cycle control, and they may serve as markers for proliferation.
Project description:Eukaryotic genomes are packaged into chromatin by histone proteins whose chemical modification can profoundly influence gene expression. The histone modifications often act in combinations, which exert different effects on gene expression. Although a number of experimental techniques and data analysis methods have been developed to study histone modifications, it is still very difficult to identify the relationships among histone modifications on a genome-wide scale.We proposed a method to identify the combinatorial effects of histone modifications by association rule mining. The method first identified Functional Modification Transactions (FMTs) and then employed association rule mining algorithm and statistics methods to identify histone modification patterns. We applied the proposed methodology to Pokholok et al's data with eight sets of histone modifications and Kurdistani et al's data with eleven histone acetylation sites. Our method succeeds in revealing two different global views of histone modification landscapes on two datasets and identifying a number of modification patterns some of which are supported by previous studies.We concentrate on combinatorial effects of histone modifications which significantly affect gene expression. Our method succeeds in identifying known interactions among histone modifications and uncovering many previously unknown patterns. After in-depth analysis of possible mechanism by which histone modification patterns can alter transcriptional states, we infer three possible modification pattern reading mechanism ('redundant', 'trivial', 'dominative'). Our results demonstrate several histone modification patterns which show significant correspondence between yeast and human cells.
Project description:Ischemic renal injury can produce chronic renal inflammation and fibrosis. This study tested whether ischemia-reperfusion (I/R) activates histone-modifying enzyme systems and alters histone expression at selected proinflammatory/profibrotic genes. CD-1 mice were subjected to 30 min of unilateral I/R. Contralateral kidneys served as controls. At 1, 3, or 7 days of reflow, bilateral nephrectomy was performed. Renal cortices were probed for monocyte chemoattractant protein-1 (MCP-1), transforming growth factor-beta1 (TGF-beta1), and collagen III mRNAs and cytokine levels. RNA polymerase II (Pol II) binding, which initiates transcription, was quantified at exon 1 of the MCP-1, TGF-beta1, collagen III genes (chromatin immunoprecipitation assay). Two representative gene-activating histone modifications [histone 3 lysine 4 (H3K4) trimethylation (m3) (H3K4m3); histone 2 variant H2A.Z] were sought. Degrees of binding of two relevant histone-modifying enzymes (Set1, BRG1) to target genes were assessed. Renal cortical Set1, BRG1, and H2A.Z mRNAs were measured. Finally, the potential utility of urinary mRNA concentrations as noninvasive markers of these in vivo processes was tested. I/R caused progressive increases in Pol II binding to MCP-1, TGF-beta1, and collagen III genes. Parallel increases in cognate mRNAs also were expressed. Progressive increases in renal cortical Set1, BRG1, H2A.Z mRNAs, and increased Set1/BRG1 binding to target genes occurred. These changes corresponded with: 1) progressive elevations of H3K4m3 and H2A.Z at each test gene; 2) increases in renal cortical TGF-beta1/MCP-1 cytokines; and 3) renal collagen deposition (assessed by histomorphology). Postischemic increases in urinary TGF-beta1, MCP-1, Set1, and BRG1 mRNAs were also observed. We conclude that: 1) I/R upregulates histone-modifying enzyme systems, 2) histone modifications at proinflammatory/profibrotic genes can result, and 3) urinary mRNA assessments may have utility for noninvasive monitoring of these in vivo events.
Project description:A major obstacle in understanding the complex biology of the malaria parasite remains to discover how gene transcription is controlled during its life cycle. Accumulating evidence indicates that the parasite's epigenetic state plays a fundamental role in gene expression and virulence. Using a comprehensive and quantitative mass spectrometry approach, we determined the global and dynamic abundance of histones and their covalent post-transcriptional modifications throughout the intraerythrocytic developmental cycle of Plasmodium falciparum. We detected a total of 232 distinct modifications, of which 160 had never been detected in Plasmodium and 88 had never been identified in any other species. We further validated over 10% of the detected modifications and their expression patterns by multiple reaction monitoring assays. In addition, we uncovered an unusual chromatin organization with parasite-specific histone modifications and combinatorial dynamics that may be directly related to transcriptional activity, DNA replication, and cell cycle progression. Overall, our data suggest that the malaria parasite has a unique histone modification signature that correlates with parasite virulence.
Project description:Epigenetic variation plays a significant role in normal development and human diseases including cancer, in part through post-translational modifications (PTMs) of histones. Identification and profiling of changes in histone PTMs, and in proteins regulating PTMs, are crucial to understanding diseases, and for discovery of epigenetic therapeutic agents. In this study, we have adapted and validated an antibody-based reverse phase protein array (RPPA) platform for profiling 20 histone PTMs and expression of 40 proteins that modify histones and other epigenomic regulators. The specificity of the RPPA assay for histone PTMs was validated with synthetic peptides corresponding to histone PTMs and by detection of histone PTM changes in response to inhibitors of histone modifier proteins in cell cultures. The useful application of the RPPA platform was demonstrated with two models: induction of pluripotent stem cells and a mouse mammary tumor progression model. Described here is a robust platform that includes a rapid microscale method for histone isolation and partially automated workflows for analysis of histone PTMs and histone modifiers that can be performed in a high-throughput manner with hundreds of samples. This RPPA platform has potential for translational applications through the discovery and validation of epigenetic states as therapeutic targets and biomarkers. SIGNIFICANCE: Our study has established an antibody-based reverse phase protein array platform for global profiling of a wide range of post-translational modifications of histones and histone modifier proteins. The high-throughput platform provides comprehensive analyses of epigenetics for biological research and disease studies and may serve as screening assay for diagnostic purpose or therapy development.
Project description:Chromatin immunoprecipitation followed by sequencing (ChIP-seq) has been instrumental to our current view of chromatin structure and function. It allows genome-wide mapping of histone marks, which demarcate biologically relevant domains. However, ChIP-seq is an ensemble measurement reporting the average occupancy of individual marks in a cell population. Consequently, our understanding of the combinatorial nature of chromatin states relies almost exclusively on correlation between the genomic distributions of individual marks. Here, we report the development of combinatorial-iChIP to determine the genome-wide co-occurrence of histone marks at single-nucleosome resolution. By comparing to a null model, we show that certain combinations of overlapping marks (H3K36me3 and H3K79me3) co-occur more frequently than would be expected by chance, while others (H3K4me3 and H3K36me3) do not, reflecting differences in the underlying chromatin pathways. We further use combinatorial-iChIP to illuminate aspects of the Set2-RPD3S pathway. This approach promises to improve our understanding of the combinatorial complexity of chromatin.