Elucidating combinatorial histone modifications and crosstalks by coupling histone-modifying enzyme with biotin ligase activity.
Ontology highlight
ABSTRACT: Histone post-translational modifications (PTMs) often form complex patterns of combinations and cooperate to specify downstream biological processes. In order to systemically analyse combinatorial PTMs and crosstalks among histone PTMs, we have developed a novel nucleosome purification method called Biotinylation-assisted Isolation of CO-modified Nucleosomes (BICON). This technique is based on physical coupling of the enzymatic activity of a histone-modifying enzyme with in vivo biotinylation by the biotin ligase BirA, and using streptavidin to purify the co-modified nucleosomes. Analysing the nucleosomes isolated by BICON allows the identification of PTM combinations that are enriched on the modified nucleosomes and function together within the nucleosome context. We used this new approach to study MSK1-mediated H3 phosphorylation and found that MSK1 not only directly phosphorylated H3, but also induced hyperacetylation of both histone H3 and H4 within the nucleosome. Moreover, we identified a novel crosstalk pathway between H3 phosphorylation and H4 acetylation on K12. Involvement of these acetyl marks in MSK1-mediated transcription was further confirmed by chromatin immunoprecipitation assays, thus validating the biological relevance of the BICON results. These studies serve as proof-of-principle for this new technical approach, and demonstrate that BICON can be further adapted to study PTMs and crosstalks associated with other histone-modifying enzymes.
SUBMITTER: Lau PN
PROVIDER: S-EPMC3561940 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA