Unknown

Dataset Information

0

Human LIGIV is synthetically lethal with the loss of Rad54B-dependent recombination and is required for certain chromosome fusion events induced by telomere dysfunction.


ABSTRACT: Classic non-homologous end joining (C-NHEJ) is the predominant DNA double-strand break repair pathway in humans. Although seven genes Ku70, Ku86, DNA-PK(cs), Artemis, DNA Ligase IV (LIGIV), X-ray cross-complementing group 4 and XRCC4-like factor are required for C-NHEJ, several of them also have ancillary functions. For example, Ku70:Ku86 possesses an essential telomere maintenance activity. In contrast, LIGIV is believed to function exclusively in C-NHEJ. Moreover, a viable LIGIV-null human B-cell line and LIGIV-reduced patient cell lines have been described. Together, these observations suggest that LIGIV (and hence C-NHEJ), albeit important, is nonetheless dispensable, whereas Ku70:Ku86 and telomere maintenance are essential. To confirm this hypothesis, we inactivated LIGIV in the epithelial human cell line, HCT116. The resulting LIGIV-null cell line was viable, verifying that the gene and C-NHEJ are not essential. However, functional inactivation of RAD54B, a key homologous recombination factor, in the LIGIV-null background yielded no viable clones, suggesting that the combined absence of RAD54B/homologous recombination and C-NHEJ is synthetically lethal. Finally, we demonstrate that LIGIV is differentially required for certain chromosome fusion events induced by telomere dysfunction-used for those owing to the overexpression of a dominant negative version of telomere recognition factor 2, but not used for those owing to absence of Ku70:Ku86.

SUBMITTER: Oh S 

PROVIDER: S-EPMC3561972 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC52649 | biostudies-other
| S-EPMC2718384 | biostudies-literature
2010-05-28 | E-GEOD-22016 | biostudies-arrayexpress
| S-EPMC125815 | biostudies-literature
| S-EPMC3021033 | biostudies-literature
| S-EPMC5762267 | biostudies-literature
| S-EPMC5730454 | biostudies-literature
2010-05-28 | GSE22016 | GEO
| S-EPMC1460145 | biostudies-other
2006-07-01 | GSE4627 | GEO