Unknown

Dataset Information

0

Identification of a novel jasmonate-responsive element in the AtJMT promoter and its binding protein for AtJMT repression.


ABSTRACT: Jasmonates (JAs) are important regulators of plant biotic and abiotic stress responses and development. AtJMT in Arabidopsis thaliana and BcNTR1 in Brassica campestris encode jasmonic acid carboxyl methyltransferases, which catalyze methyl jasmonate (MeJA) biosynthesis and are involved in JA signaling. Their expression is induced by MeJA application. To understand its regulatory mechanism, here we define a novel JA-responsive cis-element (JARE), G(C)TCCTGA, in the AtJMT and BcNTR1 promoters, by promoter deletion analysis and Yeast 1-Hybrid (Y1H) assays; the JARE is distinct from other JA-responsive cis-elements previously reported. We also used Y1H screening to identify a trans-acting factor, AtBBD1, which binds to the JARE and interacts with AtJAZ1 and AtJAZ4. Knockout and overexpression analyses showed that AtBBD1 and its close homologue AtBBD2 are functionally redundant and act as negative regulators of AtJMT expression. However, AtBBD1 positively regulated the JA-responsive expression of JR2. Chromatin immunoprecipitation from knockout and overexpression plants revealed that repression of AtJMT is associated with reduced histone acetylation in the promoter region containing the JARE. These results show that AtBBD1 interacts with JAZ proteins, binds to the JARE and represses AtJMT expression.

SUBMITTER: Seo JS 

PROVIDER: S-EPMC3564755 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of a novel jasmonate-responsive element in the AtJMT promoter and its binding protein for AtJMT repression.

Seo Jun Sung JS   Koo Yeon Jong YJ   Jung Choonkyun C   Yeu Song Yion SY   Song Jong Tae JT   Kim Ju-Kon JK   Choi Yeonhee Y   Lee Jong Seob JS   Do Choi Yang Y  

PloS one 20130205 2


Jasmonates (JAs) are important regulators of plant biotic and abiotic stress responses and development. AtJMT in Arabidopsis thaliana and BcNTR1 in Brassica campestris encode jasmonic acid carboxyl methyltransferases, which catalyze methyl jasmonate (MeJA) biosynthesis and are involved in JA signaling. Their expression is induced by MeJA application. To understand its regulatory mechanism, here we define a novel JA-responsive cis-element (JARE), G(C)TCCTGA, in the AtJMT and BcNTR1 promoters, by  ...[more]

Similar Datasets

| S-EPMC3365203 | biostudies-literature
| S-EPMC6487337 | biostudies-literature
| S-EPMC4027209 | biostudies-literature
| S-EPMC2905795 | biostudies-literature
| S-EPMC20889 | biostudies-literature
| S-EPMC1171520 | biostudies-other
| S-EPMC8675703 | biostudies-literature
| S-EPMC1065252 | biostudies-literature
| S-EPMC6132959 | biostudies-literature
| S-EPMC5500757 | biostudies-literature