Unknown

Dataset Information

0

An extension of PPLS-DA for classification and comparison to ordinary PLS-DA.


ABSTRACT: Classification studies are widely applied, e.g. in biomedical research to classify objects/patients into predefined groups. The goal is to find a classification function/rule which assigns each object/patient to a unique group with the greatest possible accuracy (classification error). Especially in gene expression experiments often a lot of variables (genes) are measured for only few objects/patients. A suitable approach is the well-known method PLS-DA, which searches for a transformation to a lower dimensional space. Resulting new components are linear combinations of the original variables. An advancement of PLS-DA leads to PPLS-DA, introducing a so called 'power parameter', which is maximized towards the correlation between the components and the group-membership. We introduce an extension of PPLS-DA for optimizing this power parameter towards the final aim, namely towards a minimal classification error. We compare this new extension with the original PPLS-DA and also with the ordinary PLS-DA using simulated and experimental datasets. For the investigated data sets with weak linear dependency between features/variables, no improvement is shown for PPLS-DA and for the extensions compared to PLS-DA. A very weak linear dependency, a low proportion of differentially expressed genes for simulated data, does not lead to an improvement of PPLS-DA over PLS-DA, but our extension shows a lower prediction error. On the contrary, for the data set with strong between-feature collinearity and a low proportion of differentially expressed genes and a large total number of genes, the prediction error of PPLS-DA and the extensions is clearly lower than for PLS-DA. Moreover we compare these prediction results with results of support vector machines with linear kernel and linear discriminant analysis.

SUBMITTER: Telaar A 

PROVIDER: S-EPMC3569448 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

An extension of PPLS-DA for classification and comparison to ordinary PLS-DA.

Telaar Anna A   Liland Kristian Hovde KH   Repsilber Dirk D   Nürnberg Gerd G  

PloS one 20130211 2


Classification studies are widely applied, e.g. in biomedical research to classify objects/patients into predefined groups. The goal is to find a classification function/rule which assigns each object/patient to a unique group with the greatest possible accuracy (classification error). Especially in gene expression experiments often a lot of variables (genes) are measured for only few objects/patients. A suitable approach is the well-known method PLS-DA, which searches for a transformation to a  ...[more]

Similar Datasets

| S-EPMC10185498 | biostudies-literature
| S-EPMC7724830 | biostudies-literature
| S-EPMC3534867 | biostudies-literature
| S-EPMC6151416 | biostudies-literature
| S-EPMC3337399 | biostudies-literature
| S-EPMC6749415 | biostudies-literature
| S-EPMC5956006 | biostudies-literature
| S-EPMC4662978 | biostudies-literature
| S-EPMC8199998 | biostudies-literature