Unknown

Dataset Information

0

Effects of an early conformational switch defect during ?X174 morphogenesis are belatedly manifested late in the assembly pathway.


ABSTRACT: C-terminal, aromatic amino acids in the ?X174 internal scaffolding protein B mediate conformational switches in the viral coat protein. These switches direct the coat protein through early assembly. In addition to the aromatic amino acids, two acidic residues, D111 and E113, form salt bridges with basic, coat protein side chains. Although salt bridge formation did not appear to be critical for assembly, the substitution of an aromatic amino acid for D111 produced a lethal phenotype. This side chain is uniquely oriented toward the center of the coat-scaffolding binding pocket, which is heavily dominated by aromatic ring-ring interactions. Thus, the D111Y substitution may restructure pocket contacts. Previously characterized B(-) mutants blocked assembly before procapsid formation. However, the D111Y mutant produced an assembled particle, which contained the structural and external scaffolding proteins but lacked protein B and DNA. A suppressor within the external scaffolding protein, which mediates the later stages of particle morphogenesis, restored viability. The unique formation of a postprocapsid particle and the novel suppressor may be indicative of a novel B protein function. However, genetic data suggest that the particle represents the delayed manifestation of an early assembly error. This seemingly late-acting defect was rescued by previously characterized suppressors of early, preprocapsid, B(-) assembly mutations, which act on the level of coat protein flexibility. Likewise, the newly isolated suppressor in the external scaffolding protein also exhibited a global suppressing phenotype. Thus, the off-pathway product isolated from infected cells may not accurately reflect the temporal nature of the initial defect.

SUBMITTER: Gordon EB 

PROVIDER: S-EPMC3571406 | biostudies-literature | 2013 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effects of an early conformational switch defect during ϕX174 morphogenesis are belatedly manifested late in the assembly pathway.

Gordon Emile B EB   Fane Bentley A BA  

Journal of virology 20121219 5


C-terminal, aromatic amino acids in the ϕX174 internal scaffolding protein B mediate conformational switches in the viral coat protein. These switches direct the coat protein through early assembly. In addition to the aromatic amino acids, two acidic residues, D111 and E113, form salt bridges with basic, coat protein side chains. Although salt bridge formation did not appear to be critical for assembly, the substitution of an aromatic amino acid for D111 produced a lethal phenotype. This side ch  ...[more]

Similar Datasets

| S-EPMC2720800 | biostudies-literature
| S-EPMC3907283 | biostudies-literature
| S-EPMC9012457 | biostudies-literature
| S-EPMC3446603 | biostudies-literature
| S-EPMC2612334 | biostudies-literature
| S-EPMC5242387 | biostudies-literature
| S-EPMC5165185 | biostudies-literature
| S-EPMC10942379 | biostudies-literature
| S-EPMC10091855 | biostudies-literature
| S-EPMC8316566 | biostudies-literature