Project description:Major advances in understanding the pathogenesis of inherited metabolic disease caused by mitochondrial DNA mutations have yet to translate into treatments of proven efficacy. Leber's hereditary optic neuropathy is the most common mitochondrial DNA disorder causing irreversible blindness in young adult life. Anecdotal reports support the use of idebenone in Leber's hereditary optic neuropathy, but this has not been evaluated in a randomized controlled trial. We conducted a 24-week multi-centre double-blind, randomized, placebo-controlled trial in 85 patients with Leber's hereditary optic neuropathy due to m.3460G>A, m.11778G>A, and m.14484T>C or mitochondrial DNA mutations. The active drug was idebenone 900 mg/day. The primary end-point was the best recovery in visual acuity. The main secondary end-point was the change in best visual acuity. Other secondary end-points were changes in visual acuity of the best eye at baseline and changes in visual acuity for both eyes in each patient. Colour-contrast sensitivity and retinal nerve fibre layer thickness were measured in subgroups. Idebenone was safe and well tolerated. The primary end-point did not reach statistical significance in the intention to treat population. However, post hoc interaction analysis showed a different response to idebenone in patients with discordant visual acuities at baseline; in these patients, all secondary end-points were significantly different between the idebenone and placebo groups. This first randomized controlled trial in the mitochondrial disorder, Leber's hereditary optic neuropathy, provides evidence that patients with discordant visual acuities are the most likely to benefit from idebenone treatment, which is safe and well tolerated.
Project description:Leber's hereditary optic neuropathy (LHON) is a disease that affects the optical nerve, causing visual loss. The diagnosis of LHON is mostly defined by the identification of three pathogenic variants in the mitochondrial DNA. Idebenone is widely used to treat LHON patients, but only some of them are responders to treatment. In our study, we assessed the maximal respiration rate (MRR) and other respiratory parameters in eight fibroblast lines from subjects carrying LHON pathogenic variants. We measured also the effects of idebenone treatment on cell growth and mtDNA amounts. Results showed that LHON fibroblasts had significantly reduced respiratory parameters in untreated conditions, but no significant gain in MRR after idebenone supplementation. No major toxicity toward mitochondrial function and no relevant compensatory effect in terms of mtDNA quantity were found for the treatment at the tested conditions. Our findings confirmed that fibroblasts from subjects harboring LHON pathogenic variants displayed impaired respiration, regardless of the disease penetrance and severity. Testing responsiveness to idebenone treatment in cultured cells did not fully recapitulate in vivo data. The in-depth evaluation of cellular respiration in fibroblasts is a good approach to evaluating novel mtDNA variants associated with LHON but needs further evaluation as a potential biomarker for disease prognosis and treatment responsiveness.
Project description:Leber's hereditary optic neuropathy (LHON) is an inherited disease caused by mutations in complex I of the mitochondrial respiratory chain. The disease is characterized by loss of central vision due to retinal ganglion cell (RGC) dysfunction and optic nerve atrophy. Despite progress towards a better understanding of the disease, no therapeutic treatment is currently approved for this devastating disease. Idebenone, a short-chain benzoquinone, has shown promising evidence of efficacy in protecting vision loss and in accelerating recovery of visual acuity in patients with LHON. It was therefore of interest to study suitable LHON models in vitro and in vivo to identify anatomical correlates for this protective activity. At nanomolar concentrations, idebenone protected the rodent RGC cell line RGC-5 against complex I dysfunction in vitro. Consistent with the reported dosing and observed effects in LHON patients, we describe that in mice, idebenone penetrated into the eye at concentrations equivalent to those which protected RGC-5 cells from complex I dysfunction in vitro. Consequently, we next investigated the protective effect of idebenone in a mouse model of LHON, whereby mitochondrial complex I dysfunction was caused by exposure to rotenone. In this model, idebenone protected against the loss of retinal ganglion cells, reduction in retinal thickness and gliosis. Furthermore, consistent with this protection of retinal integrity, idebenone restored the functional loss of vision in this disease model. These results support the pharmacological activity of idebenone and indicate that idebenone holds potential as an effective treatment for vision loss in LHON patients.
Project description:Many human childhood mitochondrial disorders result from abnormal mitochondrial DNA (mtDNA) and altered bioenergetics. These abnormalities span most of the mtDNA, demonstrating that there are no "unique" positions on the mitochondrial genome that when deleted or mutated produce a disease phenotype. This diversity implies that the relationship between mitochondrial genotype and clinical phenotype is very complex. The origins of clinical phenotypes are thus unclear, fundamentally difficult-to-treat, and are usually clinically devastating. Current treatment is largely supportive and the disorders progress relentlessly causing significant morbidity and mortality. Vitamin supplements and pharmacological agents have been used in isolated cases and clinical trials, but the efficacy of these interventions is unclear. In spite of recent advances in the understanding of the pathogenesis of mitochondrial diseases, a cure remains elusive. An optimal cure would be gene therapy, which involves introducing the missing gene(s) into the mitochondria to complement the defect. Our recent research results indicate the feasibility of an innovative protein-transduction ("protofection") technology, consisting of a recombinant mitochondrial transcription factor A (TFAM) that avidly binds mtDNA and permits efficient targeting into mitochondria in situ and in vivo. Thus, the development of gene therapy for treating mitochondrial disease offers promise, because it may circumvent the clinical abnormalities and the current inability to treat individual disorders in affected individuals. This review aims to focus on current treatment options and future therapeutics in mitochondrial disease treatment with a special emphasis on Leber's hereditary optic neuropathy.
Project description:Leber's hereditary optic neuropathy (LHON) is a mitochondrially inherited disease leading to blindness. A mitochondrial DNA point mutation at the 11778 nucleotide site of the NADH dehydrogenase subunit 4 (ND4) gene is the most common cause. The aim of this study was to evaluate the efficacy and safety of a recombinant adeno-associated virus 2 (AAV2) carrying ND4 (rAAV2-ND4) in LHON patients carrying the G11778A mutation. Nine patients were administered rAAV2-ND4 by intravitreal injection to one eye and then followed for 9 months. Ophthalmologic examinations of visual acuity, visual field, and optical coherence tomography were performed. Physical examinations included routine blood and urine. The visual acuity of the injected eyes of six patients improved by at least 0.3 log MAR after 9 months of follow-up. In these six patients, the visual field was enlarged but the retinal nerve fibre layer remained relatively stable. No other outcome measure was significantly changed. None of the nine patients had local or systemic adverse events related to the vector during the 9-month follow-up period. These findings support the feasible use of gene therapy for LHON.
Project description:Progressive impairment and degeneration of retinal ganglion cells (RGC) and nerve fibers in Leber's hereditary optic neuropathy (LHON) usually cause permanent visual loss. Idebenone is currently the only approved treatment. However, its therapeutic potential in different stages of LHON has not been definitely clarified. We aimed to investigate the changes in visual function and correlations with retinal structure in acute and in chronic LHON patients after treatment with idebenone. Twenty-three genetically confirmed LHON patients were followed during treatment using logMAR charts, automated perimetry and optical coherence tomography (OCT). Mean visual acuity improved significantly in acute patients treated within 1 year from onset (-0.52 ± 0.46 logMAR from nadir), in early chronic patients who started after 1-5 years (-0.39 ± 0.27 logMAR from baseline), and in late chronic patients with treatment initiation after >5 years (-0.33 ± 0.28 logMAR from baseline, p < 0.001 all groups). In acute and in chronic patients, strong correlations between OCT and visual function parameters were present only after treatment. This and the sustained visual recovery after treatment may indicate a reactivated signal transduction in dysfunctional RGC that survive the acute phase. Our results support previous evidence that idebenone has therapeutic potential in promoting visual recovery in LHON.
Project description:Leber's hereditary optic neuropathy, the most frequent mitochondrial disease due to mitochondrial DNA point mutations in complex I, is characterized by the selective degeneration of retinal ganglion cells, leading to optic atrophy and loss of central vision prevalently in young males. The current study investigated the reasons for the higher prevalence of Leber's hereditary optic neuropathy in males, exploring the potential compensatory effects of oestrogens on mutant cell metabolism. Control and Leber's hereditary optic neuropathy osteosarcoma-derived cybrids (11778/ND4, 3460/ND1 and 14484/ND6) were grown in glucose or glucose-free, galactose-supplemented medium. After having shown the nuclear and mitochondrial localization of oestrogen receptors in cybrids, experiments were carried out by adding 100 nM of 17?-oestradiol. In a set of experiments, cells were pre-incubated with the oestrogen receptor antagonist ICI 182780. Leber's hereditary optic neuropathy cybrids in galactose medium presented overproduction of reactive oxygen species, which led to decrease in mitochondrial membrane potential, increased apoptotic rate, loss of cell viability and hyper-fragmented mitochondrial morphology compared with control cybrids. Treatment with 17?-oestradiol significantly rescued these pathological features and led to the activation of the antioxidant enzyme superoxide dismutase 2. In addition, 17?-oestradiol induced a general activation of mitochondrial biogenesis and a small although significant improvement in energetic competence. All these effects were oestrogen receptor mediated. Finally, we showed that the oestrogen receptor ? localizes to the mitochondrial network of human retinal ganglion cells. Our results strongly support a metabolic basis for the unexplained male prevalence in Leber's hereditary optic neuropathy and hold promises for a therapeutic use for oestrogen-like molecules.
Project description:Leber's hereditary optic neuropathy (LHON) is a maternally transmitted disorder caused by point mutations in mitochondrial DNA (mtDNA). Most cases are due to mutations in genes encoding subunits of the NADH-ubiquinone oxidoreductase that is Complex I of the electron transport chain (ETC). These mutations are located at nucleotide positions 3460, 11778, or 14484 in the mitochondrial genome. The disease is characterized by apoplectic, bilateral, and severe visual loss. While the mutated mtDNA impairs generation of ATP by all mitochondria, there is only a selective loss of retinal ganglion cells and degeneration of optic nerve axons. Thus, blindness is typically permanent. Half of the men and 10% of females who harbor the pathogenic mtDNA mutation actually develop the phenotype. This incomplete penetrance and gender bias is not fully understood. Additional mitochondrial and/or nuclear genetic factors may modulate the phenotypic expression of LHON. In a population-based study, the mtDNA background of haplogroup J was associated with an inverse relationship of low-ATP generation and increased production of reactive oxygen species (ROS). Effective therapy for LHON has been elusive. In this paper, we describe the findings of pertinent published studies and discuss the controversies of potential strategies to ameliorate the disease.
Project description:Leber's hereditary optic neuropathy (LHON, MIM#535000) is the most common form of inherited optic neuropathies and mitochondrial DNA-related diseases. The pathogenicity of mutations in genes encoding components of mitochondrial Complex I is well established, but the underlying pathomechanisms of the disease are still unclear. Hypothesizing that oxidative stress related to Complex I deficiency may increase protein S-glutathionylation, we investigated the proteome-wide S-glutathionylation profiles in LHON (n = 11) and control (n = 7) fibroblasts, using the GluICAT platform that we recently developed. Glutathionylation was also studied in healthy fibroblasts (n = 6) after experimental Complex I inhibition. The significantly increased reactive oxygen species (ROS) production in the LHON group by Complex I was shown experimentally. Among the 540 proteins which were globally identified as glutathionylated, 79 showed a significantly increased glutathionylation (p < 0.05) in LHON and 94 in Complex I-inhibited fibroblasts. Approximately 42% (33/79) of the altered proteins were shared by the two groups, suggesting that Complex I deficiency was the main cause of increased glutathionylation. Among the 79 affected proteins in LHON fibroblasts, 23% (18/79) were involved in energetic metabolism, 31% (24/79) exhibited catalytic activity, 73% (58/79) showed various non-mitochondrial localizations, and 38% (30/79) affected the cell protein quality control. Integrated proteo-metabolomic analysis using our previous metabolomic study of LHON fibroblasts also revealed similar alterations of protein metabolism and, in particular, of aminoacyl-tRNA synthetases. S-glutathionylation is mainly known to be responsible for protein loss of function, and molecular dynamics simulations and 3D structure predictions confirmed such deleterious impacts on adenine nucleotide translocator 2 (ANT2), by weakening its affinity to ATP/ADP. Our study reveals a broad impact throughout the cell of Complex I-related LHON pathogenesis, involving a generalized protein stress response, and provides a therapeutic rationale for targeting S-glutathionylation by antioxidative strategies.