Unknown

Dataset Information

0

Genome-wide analysis of thyroid hormone receptors shared and specific functions in neural cells.


ABSTRACT: TR?1 and TR?1, the two main thyroid hormone receptors in mammals, are transcription factors that share similar properties. However, their respective functions are very different. This functional divergence might be explained in two ways: it can reflect different expression patterns or result from different intrinsic properties of the receptors. We tested this second hypothesis by comparing the repertoires of 3,3',5-triiodo-L-thyronine (T3)-responsive genes of two neural cell lines, expressing either TR?1 or TR?1. Using transcriptome analysis, we found that a substantial fraction of the T3 target genes display a marked preference for one of the two receptors. So when placed alone in identical situations, the two receptors have different repertoires of target genes. Chromatin occupancy analysis, performed at a genome-wide scale, revealed that TR?1 and TR?1 cistromes were also different. However, receptor-selective regulation of T3 target genes did not result from receptor-selective chromatin occupancy of their promoter regions. We conclude that modification of TR?1 and TR?1 intrinsic properties contributes in a large part to the divergent evolution of the receptors' function, at least during neurodevelopment.

SUBMITTER: Chatonnet F 

PROVIDER: S-EPMC3581916 | biostudies-literature | 2013 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genome-wide analysis of thyroid hormone receptors shared and specific functions in neural cells.

Chatonnet Fabrice F   Guyot Romain R   Benoît Gérard G   Flamant Frederic F  

Proceedings of the National Academy of Sciences of the United States of America 20130204 8


TRα1 and TRβ1, the two main thyroid hormone receptors in mammals, are transcription factors that share similar properties. However, their respective functions are very different. This functional divergence might be explained in two ways: it can reflect different expression patterns or result from different intrinsic properties of the receptors. We tested this second hypothesis by comparing the repertoires of 3,3',5-triiodo-L-thyronine (T3)-responsive genes of two neural cell lines, expressing ei  ...[more]

Similar Datasets

2012-12-31 | E-GEOD-41727 | biostudies-arrayexpress
2012-12-31 | GSE41727 | GEO
2012-12-31 | GSE38347 | GEO
2012-12-31 | E-GEOD-38347 | biostudies-arrayexpress
| S-EPMC3928038 | biostudies-literature
| S-EPMC1257648 | biostudies-literature
| S-EPMC2852416 | biostudies-other
| S-EPMC3403905 | biostudies-literature
| S-EPMC3469053 | biostudies-literature
| S-EPMC6203810 | biostudies-literature