Unknown

Dataset Information

0

The evolutionary relationship between microbial rhodopsins and metazoan rhodopsins.


ABSTRACT: Rhodopsins are photoreceptive proteins with seven-transmembrane alpha-helices and a covalently bound retinal. Based on their protein sequences, rhodopsins can be classified into microbial rhodopsins and metazoan rhodopsins. Because there is no clearly detectable sequence identity between these two groups, their evolutionary relationship was difficult to decide. Through ancestral state inference, we found that microbial rhodopsins and metazoan rhodopsins are divergently related in their seven-transmembrane domains. Our result proposes that they are homologous proteins and metazoan rhodopsins originated from microbial rhodopsins. Structure alignment shows that microbial rhodopsins and metazoan rhodopsins share a remarkable structural homology while the position of retinal-binding lysine is different between them. It suggests that the function of photoreception was once lost during the evolution of rhodopsin genes. This result explains why there is no clearly detectable sequence similarity between the two rhodopsin groups: after losing the photoreception function, rhodopsin gene was freed from the functional constraint and the process of divergence could quickly change its original sequence beyond recognition.

SUBMITTER: Shen L 

PROVIDER: S-EPMC3583139 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

The evolutionary relationship between microbial rhodopsins and metazoan rhodopsins.

Shen Libing L   Chen Chao C   Zheng Hongxiang H   Jin Li L  

TheScientificWorldJournal 20130211


Rhodopsins are photoreceptive proteins with seven-transmembrane alpha-helices and a covalently bound retinal. Based on their protein sequences, rhodopsins can be classified into microbial rhodopsins and metazoan rhodopsins. Because there is no clearly detectable sequence identity between these two groups, their evolutionary relationship was difficult to decide. Through ancestral state inference, we found that microbial rhodopsins and metazoan rhodopsins are divergently related in their seven-tra  ...[more]

Similar Datasets

| S-EPMC9728251 | biostudies-literature
| S-EPMC4585134 | biostudies-literature
| S-EPMC5628938 | biostudies-literature
| S-EPMC9601134 | biostudies-literature
| S-EPMC3554412 | biostudies-literature
| S-EPMC5747503 | biostudies-literature
| S-EPMC3198991 | biostudies-literature
| S-EPMC3608849 | biostudies-literature
| S-EPMC10865882 | biostudies-literature
| S-EPMC9986721 | biostudies-literature