Unknown

Dataset Information

0

Morphology transition in lipid vesicles due to in-plane order and topological defects.


ABSTRACT: Complex morphologies in lipid membranes typically arise due to chemical heterogeneity, but in the tilted gel phase, complex shapes can form spontaneously even in a membrane containing only a single lipid component. We explore this phenomenon via experiments and coarse-grained simulations on giant unilamellar vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. When cooled from the untilted L(?) liquid-crystalline phase into the tilted gel phase, vesicles deform from smooth spheres to disordered, highly crumpled shapes. We propose that this shape evolution is driven by nucleation of complex membrane microstructure with topological defects in the tilt orientation that induce nonuniform membrane curvature. Coarse-grained simulations demonstrate this mechanism and show that kinetic competition between curvature change and defect motion can trap vesicles in deeply metastable, defect-rich structures.

SUBMITTER: Hirst LS 

PROVIDER: S-EPMC3587188 | biostudies-literature | 2013 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Morphology transition in lipid vesicles due to in-plane order and topological defects.

Hirst Linda S LS   Ossowski Adam A   Fraser Matthew M   Geng Jun J   Selinger Jonathan V JV   Selinger Robin L B RL  

Proceedings of the National Academy of Sciences of the United States of America 20130211 9


Complex morphologies in lipid membranes typically arise due to chemical heterogeneity, but in the tilted gel phase, complex shapes can form spontaneously even in a membrane containing only a single lipid component. We explore this phenomenon via experiments and coarse-grained simulations on giant unilamellar vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. When cooled from the untilted L(α) liquid-crystalline phase into the tilted gel phase, vesicles deform from smooth spheres to disor  ...[more]

Similar Datasets

| S-EPMC3986143 | biostudies-literature
| S-EPMC10520633 | biostudies-literature
| S-EPMC9018851 | biostudies-literature
| S-EPMC7725452 | biostudies-literature
| S-EPMC4928966 | biostudies-literature
| S-EPMC9660165 | biostudies-literature
| S-EPMC4877643 | biostudies-literature
| S-EPMC5459947 | biostudies-literature
| S-EPMC5983919 | biostudies-literature
| S-EPMC6957514 | biostudies-literature