Ontology highlight
ABSTRACT: Background
Myasthenia gravis is a disorder of neuromuscular transmission associated with autoantibodies against the nicotinic acetylcholine receptor. We have previously developed a customized protein macroarray comprising 1827 potential human autoantigens, which permitted to discriminate sera of patients with different cancers from sera of healthy controls, but has not yet been evaluated in antibody-mediated autoimmune diseases.Objective
To determine whether autoantibody signatures obtained by protein macroarray separate sera of patients with myasthenia gravis from healthy controls.Methods
Sera of patients with acetylcholine receptor antibody-positive myasthenia gravis (n = 25) and healthy controls (n = 32) were analyzed by protein macroarrays comprising 1827 peptide clones.Results
Autoantibody signatures did not separate patients with myasthenia gravis from controls with sufficient sensitivity, specificity, and accuracy. Intensity values of one antigen (poly A binding protein cytoplasmic 1, p = 0.0045) were higher in patients with myasthenia gravis, but the relevance of this and two further antigens, 40S ribosomal protein S13 (20.8% vs. 0%, p = 0.011) and proteasome subunit alpha type 1 (25% vs. 3.1%, p = 0.035), which were detected more frequently by myasthenia gravis than by control sera, currently remains uncertain.Conclusion
Seroreactivity profiles of patients with myasthenia gravis detected by a customized protein macroarray did not allow discrimination from healthy controls, compatible with the notion that the autoantibody response in myasthenia gravis is highly focussed against the acetylcholine receptor.
SUBMITTER: Becker A
PROVIDER: S-EPMC3587426 | biostudies-literature | 2013
REPOSITORIES: biostudies-literature
Becker Anne A Ludwig Nicole N Keller Andreas A Tackenberg Björn B Eienbröker Christian C Oertel Wolfgang H WH Fassbender Klaus K Meese Eckart E Ruprecht Klemens K
PloS one 20130304 3
<h4>Background</h4>Myasthenia gravis is a disorder of neuromuscular transmission associated with autoantibodies against the nicotinic acetylcholine receptor. We have previously developed a customized protein macroarray comprising 1827 potential human autoantigens, which permitted to discriminate sera of patients with different cancers from sera of healthy controls, but has not yet been evaluated in antibody-mediated autoimmune diseases.<h4>Objective</h4>To determine whether autoantibody signatur ...[more]