Structure-activity relationship studies of naphthol AS-E and its derivatives as anticancer agents by inhibiting CREB-mediated gene transcription.
Ontology highlight
ABSTRACT: CREB (cyclic AMP-response element binding protein) is a downstream transcription factor of a multitude of signaling pathways emanating from receptor tyrosine kinases or G-protein coupled receptors. CREB is not activated until it is phosphorylated at Ser133 and its subsequent binding to CREB-binding protein (CBP) through kinase-inducible domain (KID) in CREB and KID-interacting (KIX) domain in CBP. Tumor tissues from various organs present higher level of expression and activation of CREB. Thus CREB has been proposed as a promising cancer drug target. We previously described naphthol AS-E (1a) as a small molecule inhibitor of CREB-mediated gene transcription in living cells. Here we report the structure-activity relationship (SAR) studies of 1a by modifying the appendant phenyl ring. All the compounds were evaluated for in vitro inhibition of KIX-KID interaction, cellular inhibition of CREB-mediated gene transcription and inhibition of proliferation of four cancer cell lines (A549, MCF-7, MDA-MB-231 and MDA-MB-468). SAR indicated that a small and electron-withdrawing group was preferred at the para-position for KIX-KID interaction inhibition. Compound 1a was selected for further biological characterization and it was found that 1a down-regulated the expression of endogenous CREB target genes. Expression of a constitutively active CREB mutant, VP16-CREB in MCF-7 cells rendered the cells resistant to 1a, suggesting that CREB was critical in mediating its anticancer activity. Furthermore, 1a was not toxic to normal human cells. Collectively, these data support that 1a represents a structural template for further development into potential cancer therapeutics with a novel mechanism of action.
SUBMITTER: Li BX
PROVIDER: S-EPMC3587690 | biostudies-literature | 2012 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA