Project description:Smoking adversely affects hematopoietic stem cell transplantation outcome. We asked whether smoking affected outcome of newly diagnosed acute myeloid leukemia (AML) patients treated with chemotherapy. Data were collected on 280 AML patients treated with high-dose cytarabine and idarubicin-containing regimens at Roswell Park Cancer Institute who had smoking status data at diagnosis. Patients' gender, age, AML presentation (de novo vs. secondary), white blood cell (WBC) count at diagnosis, karyotype and smoking status (never vs. ever) were analyzed. Among the 161 males and 119 females with a median follow-up of 12.9 months, 101 (36.1%) had never smoked and 179 (63.9%) were ever smokers. The proportion of patients between never and ever smokers was similar to respect to age, AML presentation, WBC count at diagnosis or karyotype based on univariate analysis of these categorical variables. Never smokers had a significantly longer overall survival (OS) (60.32 months) compared to ever smokers (30.89; p = 0.005). In multivariate analysis incorporating gender, age, AML presentation, WBC count, karyotype and smoking status as covariates, age, karyotype and smoking status retained prognostic value for OS. In summary, cigarette smoking has a deleterious effect on OS in AML.
Project description:Cancer cells accumulate epigenetic modifications that allow escape from intrinsic and extrinsic surveillance mechanisms. In the case of acute myeloid leukemias (AML) and myelodysplastic syndromes, agents that disrupt chromatin structure, namely hypomethylating agents (HMAs), have shown tremendous promise as an alternate, milder treatment option for older, clinically non-fit patients. HMAs reprogram the epigenetic landscape in tumor cells through the reversal of DNA hypermethylation. Therapeutic effects resulting from these epigenetic changes are incredibly effective, sometimes resulting in complete remissions, but are frequently lost due to primary or acquired resistance. In this study, we describe syngeneic murine leukemias that are responsive to the HMA 5-azacytidine (5-Aza), as determined by augmented expression of a transduced luciferase reporter. We also found that 5-Aza treatment re-established immune-related transcript expression, suppressed leukemic burden and extended survival in leukemia-challenged mice. The effects of 5-Aza treatment were short-lived, and analysis of the immune microenvironment reveals possible mechanisms of resistance, such as simultaneous increase in immune checkpoint protein expression. This represents a model system that is highly responsive to HMAs and recapitulates major therapeutic outcomes observed in human leukemia (relapse) and may serve as a pre-clinical tool for studying acquired resistance and novel treatment combinations.
Project description:Myelodysplastic syndromes (MDS) are stem cell disorders caused by various gene abnormalities. We performed targeted deep sequencing in 39 patients with high-risk MDS and secondary acute myeloid leukemia (sAML) at diagnosis and follow-up (response and/or relapse), with the aim to define their mutational status, to establish if specific mutations are biomarkers of response to 5-azacytidine (AZA) and/or may have impact on survival. Overall, 95% of patients harbored at least one mutation. TP53, DNMT3A and SRSF2 were the most frequently altered genes. Mutations in TP53 correlated with higher risk features and shorter overall survival (OS) and progression free survival (PFS) in univariate analysis. Patients with SRSF2 mutations were associated with better OS and PFS. Response rate was 55%; but we could not correlate the presence of TET2 and TP53 mutations with AZA response. Patients with sAML presented more variations than patients with high-risk MDS, and usually at relapse the number of mutations increased, supporting the idea that in advanced stages of the disease there is a greater genomic complexity. These results confirm that mutation analysis can add prognostic value to high-risk MDS and sAML patients, not only at diagnosis but also at follow-up.
Project description:Azacytidine (AzaC) and decitabine (AzadC) are cytosine analogs that covalently trap DNA methyltransferases, which place the important epigenetic mark 5-methyl-2'-deoxycytidine by methylating 2'-deoxycytidine (dC) at the C5 position. AzaC and AzadC are used in the clinic as antimetabolites to treat myelodysplastic syndrome and acute myeloid leukemia and are explored against other types of cancer. Although their principal mechanism of action is known, the downstream effects of AzaC and AzadC treatment are not well understood and the cellular prerequisites that determine sensitivity toward AzaC and AzadC remain elusive. Here, we investigated the effects and phenotype of AzaC and AzadC exposure on the acute myeloid leukemia cell line MOLM-13. We found that while AzaC and AzadC share many effects on the cellular level, including decreased global DNA methylation, increased formation of DNA double-strand breaks, transcriptional downregulation of important oncogenes and similar changes on the proteome level, AzaC failed in contrast to AzadC to induce apoptosis efficiently in MOLM-13. The only cellular marker that correlated with this clear phenotypical outcome was the level of hydroxy-methyl-dC, an additional epigenetic mark that is placed by TET enzymes and repressed in cancer cells. Whereas AzadC increased hmdC substantially in MOLM-13, AzaC treatment did not result in any increase at all. This suggests that hmdC levels in cancer cells should be monitored as a response toward AzaC and AzadC and considered as a biomarker to judge whether AzaC or AzadC treatment leads to cell death in leukemic cells.
Project description:The outcome of older (? 60 years) acute myeloid leukemia (AML) patients is poor, and novel treatments are needed. In a phase 2 trial for older AML patients, low-dose (20 mg/m(2) per day for 10 days) decitabine, a DNA hypomethylating azanucleoside, produced 47% complete response rate with an excellent toxicity profile. To assess the genome-wide activity of decitabine, we profiled pretreatment and post treatment (day 25/course 1) methylomes of marrow samples from patients (n = 16) participating in the trial using deep-sequencing analysis of methylated DNA captured by methyl-binding protein (MBD2). Decitabine significantly reduced global methylation compared with pretreatment baseline (P = .001). Percent marrow blasts did not correlate with global methylation levels, suggesting that hypomethylation was related to the activity of decitabine rather than to a mere decrease in leukemia burden. Hypomethylation occurred predominantly in CpG islands and CpG island-associated regions (P ranged from .03 to .04) A significant concentration (P < .001) of the hypomehtylated CpG islands was found in chromosome subtelomeric regions, suggesting a differential activity of decitabine in distinct chromosome regions. Hypermethylation occurred much less frequently than hypomethylation and was associated with low CpG content regions. Decitabine-related methylation changes were concordant with those previously reported in distinct genes. In summary, our study supports the feasibility of methylome analyses as a pharmacodynamic endpoint for hypomethylating therapies.
Project description:Hypomethylating agents are a classical frontline low-intensity therapy for older patients with acute myeloid leukemia. Recently, TP53 gene mutations have been described as a potential predictive biomarker of better outcome in patients treated with a ten-day decitabine regimen., However, functional characteristics of TP53 mutant are heterogeneous, as reflected in multiple functional TP53 classifications and their impact in patients treated with azacitidine is less clear. We analyzed the therapeutic course and outcome of 279 patients treated with azacitidine between 2007 and 2016, prospectively enrolled in our regional healthcare network. By screening 224 of them, we detected TP53 mutations in 55 patients (24.6%), including 53 patients (96.4%) harboring high-risk cytogenetics. The identification of any TP53 mutation was associated with worse overall survival but not with response to azacitidine in the whole cohort and in the subgroup of patients with adverse karyotype. Stratification of patients according to three recent validated functional classifications did not allow the identification of TP53 mutated patients who could benefit from azacitidine. Systematic TP53 mutant classification will deserve further exploration in the setting of patients treated with conventional therapy and in the emerging field of therapies targeting TP53 pathway.
Project description:PurposeA cohort of pediatric patients with AML treated at hospitals contributing to the Pediatric Health Information System was used to evaluate differences in opioid utilization by sex, age, race, and insurance.MethodsBilling data were used to compute the prevalence of opioid exposure and to quantify rates of utilization among those exposed to opioids as days of use per 1000 inpatient days. Multivariable regressions were used to compare opioid prevalence, and rates of utilization among those exposed.ResultsOn average across courses, 95.2% of patients were exposed to analgesics, 84.7% were exposed to non-opioid analgesics and 77.7% were exposed to opioids. The proportion of opioid-exposed patients increased with age, but did not differ by gender, race, or insurance status. Analyses limited to patients exposed to opioids revealed modest differences in days of opioid use among female patients (adjusted rate ratio (aRR) = 1.19, 95% CI: 1.11, 1.28), patients <1 year (aRR = 1.37, 95% CI: 1.21, 1.55) or ≥10 years of age (aRR = 1.63, 95% CI: 1.46, 1.82), whereas Asian patients received fewer days of opioids compared with white patients (aRR = 0.76, 95% CI: 0.61, 0.95). There was moderate hospital-level variability in both the prevalence of opioid utilization overall and preference for specific opioid medications. There was greater inconsistency in practice concerning choices for supplemental and alternative opioids than in first-line opioid utilization.ConclusionAdditional work is needed to discern whether observed differences in opioid utilization by age and race reflect a difference in treatment or a difference in the experience of pain. Future studies should also explore the factors which guide decisions on opioid selections in an attempt to explain the variability across institutions.
Project description:Older patients with newly diagnosed acute myeloid leukemia (AML) in the phase 3 AZA-AML-001 study were evaluated at entry for cytogenetic abnormalities, and a subgroup of patients was assessed for gene mutations. Patients received azacitidine 75 mg/m2/day x7 days (n = 240) or conventional care regimens (CCR; n = 245): intensive chemotherapy, low-dose cytarabine, or best supportive care only. Overall survival (OS) was assessed for patients with common (occurring in ≥10% of patients) cytogenetic abnormalities and karyotypes, and for patients with recurring gene mutations. There was a significant OS improvement with azacitidine vs CCR for patients with European LeukemiaNet-defined Adverse karyotype (HR 0.71 [95%CI 0.51-0.99]; P = 0.046). Azacitidine-treated patients with -5/5q-, -7/7q-, or 17p abnormalities, or with monosomal or complex karyotypes, had a 31-46% reduced risk of death vs CCR. The most frequent gene mutations were DNMT3A (27%), TET2 (25%), IDH2 (23% [R140, 15%; R172, 8%]), and TP53 (21%). Compared with wild-type, OS was significantly reduced among CCR-treated patients with TP53 or NRAS mutations and azacitidine-treated patients with FLT3 or TET2 mutations. Azacitidine may be a preferred treatment for older patients with AML with Adverse-risk cytogenetics, particularly those with chromosome 5, 7, and/or 17 abnormalities and complex or monosomal karyotypes. The influence of gene mutations in azacitidine-treated patients warrants further study.