Project description:BACKGROUND:Point mutations in SPG4, the gene encoding spastin, are a frequent cause of autosomal dominant hereditary spastic paraplegia (AD-HSP). However, standard methods for genetic analyses fail to detect exonic microdeletions. METHODS:121 mutation-negative probands were screened for rearrangements in SPG4 by multiplex ligation-dependent probe amplification. RESULTS:24 patients with 16 different heterozygotic exon deletions in SPG4 (20%) were identified, ranging from one exon to the whole coding sequence. Comparison with 78 patients with point mutations showed a similar clinical picture but an earlier age at onset. CONCLUSIONS:Exon deletions in SPG4 are as frequent as point mutations, and SPG4 is responsible for 40% of AD-HSP.
Project description:The spectrum of mutations (missense, non-sense and splice-site) associated with hereditary spastic paraplegia 4 (HSP-SPG4) (SPG4:OMIM#182601) has suggested that this autosomal dominant disease results from loss of function. Because the protein encoded by SPG4, termed spastin, is a microtubule-severing enzyme, a loss-of-function scenario for the disease suggests that corticospinal axons degenerate due to inadequate microtubule severing resulting from inactivation of one spastin allele. Lending more complexity to the situation, there are two major isoforms of spastin (M1 and M87) translated from two start codons. M87 is widely expressed, while M1 is appreciably detected only in adult spinal cord. Here, we focused on four HSP-associated mutations of the SPG4 gene located outside of the AAA region essential for microtubule severing. We found that none of these mutations affected the enzymatic activity or expression levels of either M1 or M87. Three of the mutations resulted in dominant-negative activity of M1. Surprisingly, the S44L mutation, which is asymptomatic when present heterozygously, conferred dominant-negative activity, while the E112K mutation, which is symptomatic when present heterozygously, did not. Clinical symptoms reported for patients carrying the dominant-negative mutations L195V or 46Stop are not more severe than those reported for patients carrying the non-dominant-negative E112K mutation. These results indicate that there are cases of HSP-SPG4 that cannot be explained by insufficient spastin microtubule-severing activity.
Project description:Hereditary spastic paraplegia (HSP) comprises a heterogeneous group of neurodegenerative disorders, it share common symptom - of progressive lower spastic paraparesis. The most common autosomal dominant (AD) forms of HSP are SPG4 (SPAST gene) and SPG3 (ATL1 gene). In the current research we investigated for the first time the distribution of pathogenic mutations in SPAST and ATL1 genes within a large cohort of Russian HSP patients (122 probands; 69 famillial cases). We determined the frequencies of genetic abnormalities using Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), and Next Generation Sequencing (NGS) of targeted gene panels. As a result, SPG4 was diagnosed in 30.3% (37/122) of HSP cases, where the familial cases represented 37.7% (26/69) of SPG4. In total 31 pathogenic and likely pathogenic variants were detected in SPAST, with 14 new mutations. Among all detected SPAST variants, 29% were gross deletions and duplications. The proportion of SPG3 variants in Russian cohort was 8.2% (10/122) that were all familial cases. All 10 detected ATL1 mutations were missense substitutions, most of which were in the mutational hot spots of 4, 7, 8, 12 exons, with 2 novel mutations. This work will be helpful for the populational genetics of HSP understanding.
Project description:BACKGROUND:Hereditary Spastic Paraplegias (HSP) are characterized by progressive spasticity and weakness of the lower limbs. At least 45 loci have been identified in families with autosomal dominant (AD), autosomal recessive (AR), or X-linked hereditary patterns. Mutations in the SPAST (SPG4) and ATL1 (SPG3A) genes would account for about 50% of the ADHSP cases. METHODS:We defined the SPAST and ATL1 mutational spectrum in a total of 370 unrelated HSP index cases from Spain (83% with a pure phenotype). RESULTS:We found 50 SPAST mutations (including two large deletions) in 54 patients and 7 ATL1 mutations in 11 patients. A total of 33 of the SPAST and 3 of the ATL1 were new mutations. A total of 141 (31%) were familial cases, and we found a higher frequency of mutation carriers among these compared to apparently sporadic cases (38% vs. 5%). Five of the SPAST mutations were predicted to affect the pre-mRNA splicing, and in 4 of them we demonstrated this effect at the cDNA level. In addition to large deletions, splicing, frameshifting, and missense mutations, we also found a nucleotide change in the stop codon that would result in a larger ORF. CONCLUSIONS:In a large cohort of Spanish patients with spastic paraplegia, SPAST and ATL1 mutations were found in 15% of the cases. These mutations were more frequent in familial cases (compared to sporadic), and were associated with heterogeneous clinical manifestations.
Project description:Biallelic loss of SPG11 function constitutes the most frequent cause of complicated autosomal recessive hereditary spastic paraplegia (HSP) with thin corpus callosum, resulting in progressive multisystem neurodegeneration. While the impact of neuroinflammation is an emerging and potentially treatable aspect in neurodegenerative diseases and leukodystrophies, the role of immune cells in SPG11-HSP patients is unknown. Here, we performed a comprehensive immunological characterization of SPG11-HSP, including examination of three human postmortem brain donations, immunophenotyping of patients' peripheral blood cells and patient-specific induced pluripotent stem cell-derived microglia-like cells (iMGL). We delineate a previously unknown role of innate immunity in SPG11-HSP. Neuropathological analysis of SPG11-HSP patient brain tissue revealed profound microgliosis in areas of neurodegeneration, downregulation of homeostatic microglial markers and cell-intrinsic accumulation of lipids and lipofuscin in IBA1+ cells. In a larger cohort of SPG11-HSP patients, the ratio of peripheral classical and intermediate monocytes was increased, along with increased serum levels of IL-6 that correlated with disease severity. Stimulation of patient-specific iMGLs with IFNγ led to increased phagocytic activity compared to control iMGL as well as increased upregulation and release of proinflammatory cytokines and chemokines, such as CXCL10. On a molecular basis, we identified increased STAT1 phosphorylation as mechanism connecting IFNγ-mediated immune hyperactivation and SPG11 loss of function. STAT1 expression was increased both in human postmortem brain tissue and in an Spg11-/- mouse model. Application of an STAT1 inhibitor decreased CXCL10 production in SPG11 iMGL and rescued their toxic effect on SPG11 neurons. Our data establish neuroinflammation as a novel disease mechanism in SPG11-HSP patients and constitute the first description of myeloid cell/ microglia activation in human SPG11-HSP. IFNγ/ STAT1-mediated neurotoxic effects of hyperreactive microglia upon SPG11 loss of function indicate that immunomodulation strategies may slow down disease progression.
Project description:The goal of this project is to study differentially expressed genes in patients affected by Hereditary Spastic Paraplegia (HSP) linked to mutations of the gene encoding spastin an ubiquitously expressed protein that has recently been shown to be involved in microtubule regulation and vesicle trafficking by cell culture studies. Gene profiling was done with Affymetrix U95Av2 GeneChips using the total RNA extracted from muscle biopsies of 3 SPG4-linked HSP patients.
Project description:A wide range of mutations in the kinesin motor Kif5A have been linked to a neuronal disorder called hereditary spastic paraplegia (HSP). The position of these mutations can vary, and a range of different motile behaviors have been observed, indicating that the HSP mutants can alter distinct aspects of kinesin mechanochemistry. While focusing on four key HSP-associated mutants, this study examined the structural and dynamic perturbations that arise from these mutations using a series of different computational methods, ranging from bioinformatics analyses to all-atom simulations, that account for solvent effects explicitly. We show that two catalytic domain mutations (R280S and K253N) reduce the microtubule (MT) binding affinity of the kinesin head domains appreciably, while N256S has a much smaller impact. Bioinformatics analysis suggests that the stalk mutation A361V perturbs motor dimerization. Subsequent integration of these effects into a coarse-grained structure-based model of dimeric kinesin revealed that the order-disorder transition of the neck linker is substantially affected, indicating a hampered directionality and processivity of kinesin. The present analyses therefore suggest that, in addition to kinesin-MT binding and coiled-coil dimerization, HSP mutations affecting motor stepping transitions and processivity can lead to disease.
Project description:Hereditary spastic paraplegias (HSPs) are a group of neurodegenerative diseases causing progressive gait dysfunction. Over 50 genes have now been associated with HSP. Despite the recent explosion in genetic knowledge, HSP remains without pharmacological treatment. Loss-of-function mutation of the SPAST gene, also known as SPG4, is the most common cause of HSP in patients. SPAST is conserved across animal species and regulates microtubule dynamics. Recent studies have shown that it also modulates endoplasmic reticulum (ER) stress. Here, utilizing null SPAST homologues in C. elegans, Drosophila and zebrafish, we tested FDA-approved compounds known to modulate ER stress in order to ameliorate locomotor phenotypes associated with HSP. We found that locomotor defects found in all of our spastin models could be partially rescued by phenazine, methylene blue, N-acetyl-cysteine, guanabenz and salubrinal. In addition, we show that established biomarkers of ER stress levels correlated with improved locomotor activity upon treatment across model organisms. Our results provide insights into biomarkers and novel therapeutic avenues for HSP.
Project description:Autosomal dominant familial spastic paraplegia (AD-FSP) is a degenerative disorder of the central motor system characterised by progressive spasticity of the lower limbs. AD-FSP has been divided into pure and complicated forms. Pure AD-FSP is genetically heterogeneous; three loci have been mapped to chromosomes 14q (SPG3), 2p (SPG4), and 15q (SPG6), whereas no loci responsible for complicated forms have been identified to date. Here we report linkage to the SPG4 locus in a three generation family with AD-FSP complicated by dementia and epilepsy. Assuming that both forms of AD-FSP are caused by mutations involving the same FSP gene, analysis of recombination events in this family positions the SPG4 gene within a 0 cM interval flanked by loci D2S2255 and D2S2347.