Mechanism of RNA 2',3'-cyclic phosphate end healing by T4 polynucleotide kinase-phosphatase.
Ontology highlight
ABSTRACT: T4 polynucleotide kinase-phosphatase (Pnkp) exemplifies a family of enzymes with 5'-kinase and 3'-phosphatase activities that function in nucleic acid repair. The polynucleotide 3'-phosphatase reaction is executed by the Pnkp C-terminal domain, which belongs to the DxDxT acylphosphatase superfamily. The 3'-phosphatase reaction entails formation and hydrolysis of a covalent enzyme-(Asp165)-phosphate intermediate, driven by general acid-base catalyst Asp167. We report that Pnkp also has RNA 2'-phosphatase activity that requires Asp165 and Asp167. The physiological substrate for Pnkp phosphatase is an RNA 2',3'-cyclic phosphate end (RNA > p), but the pathway of cyclic phosphate removal and its enzymic requirements are undefined. Here we find that Pnkp reactivity with RNA > p requires Asp165, but not Asp167. Whereas wild-type Pnkp transforms RNA > p to RNA(OH), mutant D167N converts RNA > p to RNA 3'-phosphate, which it sequesters in the phosphatase active site. In support of the intermediacy of an RNA phosphomonoester, the reaction of mutant S211A with RNA > p results in transient accumulation of RNAp en route to RNA(OH). Our results suggest that healing of 2',3'-cyclic phosphate ends is a four-step processive reaction: RNA > p + Pnkp ? RNA-(3'-phosphoaspartyl)-Pnkp ? RNA(3')p + Pnkp ? RNA(OH) + phosphoaspartyl-Pnkp ? P(i) + Pnkp.
SUBMITTER: Das U
PROVIDER: S-EPMC3592404 | biostudies-literature | 2013 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA