Augmented gamma band auditory steady-state responses: support for NMDA hypofunction in schizophrenia.
Ontology highlight
ABSTRACT: Individuals with schizophrenia (SZ) have deviations in auditory perception perhaps attributable to altered neural oscillatory response properties in thalamo-cortical and/or local cortico-cortical circuits. Previous EEG studies of auditory steady-state responses (aSSRs; a measure of sustained neuronal entrainment to repetitive stimulation) in SZ have indicated attenuated gamma range (?40 Hz) neural entrainment. Stimuli in most such studies have been relatively brief (500-1000 ms) trains of 1 ms clicks or amplitude modulated pure tones (1000 Hz) with short, fixed interstimulus intervals (200-1000 ms). The current study used extended (1500 ms), more aurally dense broadband stimuli (500-4000 Hz noise; previously demonstrated to elicit larger aSSRs) with longer, variable interstimulus intervals (2700-3300 ms). Dense array EEG (256 sensor) was collected while 17 SZ and 16 healthy subjects passively listed to stimuli modulated at 15 different frequencies spanning beta and gamma ranges (16-44 Hz in 2 Hz steps). Results indicate that SZ have augmented aSSRs that were most extreme in the gamma range. Results also constructively replicate previous findings of attenuated low frequency auditory evoked responses (2-8 Hz) in SZ. These findings (i) highlight differential characteristics of low versus high frequency and induced versus entrained oscillatory auditory responses in both SZ and healthy stimulus processing, (ii) provide support for an NMDA-receptor hypofunction-based pharmacological model of SZ, and (iii) report a novel pattern of aSSR abnormalities suggesting that gamma band neural entrainment deviations among SZ may be more complex than previously supposed, including possibly being substantially influenced by physical stimulus properties.
SUBMITTER: Hamm JP
PROVIDER: S-EPMC3601795 | biostudies-literature | 2012 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA