Unknown

Dataset Information

0

Putative excitatory and putative inhibitory inputs are localised in different dendritic domains in a Drosophila flight motoneuron.


ABSTRACT: Input-output computations of individual neurons may be affected by the three-dimensional structure of their dendrites and by the location of input synapses on specific parts of their dendrites. However, only a few examples exist of dendritic architecture which can be related to behaviorally relevant computations of a neuron. By combining genetic, immunohistochemical and confocal laser scanning methods this study estimates the location of the spike-initiating zone and the dendritic distribution patterns of putative synaptic inputs on an individually identified Drosophila flight motorneuron, MN5. MN5 is a monopolar neuron with > 4,000 dendritic branches. The site of spike initiation was estimated by mapping sodium channel immunolabel onto geometric reconstructions of MN5. Maps of putative excitatory cholinergic and of putative inhibitory GABAergic inputs on MN5 dendrites were created by charting tagged D?7 nicotinic acetylcholine receptors and Rdl GABAA receptors onto MN5 dendritic surface reconstructions. Although these methods provide only an estimate of putative input synapse distributions, the data indicate that inhibitory and excitatory synapses were located preferentially on different dendritic domains of MN5 and, thus, computed mostly separately. Most putative inhibitory inputs were close to spike initiation, which was consistent with sharp inhibition, as predicted previously based on recordings of motoneuron firing patterns during flight. By contrast, highest densities of putative excitatory inputs at more distant dendritic regions were consistent with the prediction that, in response to different power demands during flight, tonic excitatory drive to flight motoneuron dendrites must be smoothly translated into different tonic firing frequencies.

SUBMITTER: Kuehn C 

PROVIDER: S-EPMC3604049 | biostudies-literature | 2013 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Putative excitatory and putative inhibitory inputs are localised in different dendritic domains in a Drosophila flight motoneuron.

Kuehn Claudia C   Duch Carsten C  

The European journal of neuroscience 20121227 6


Input-output computations of individual neurons may be affected by the three-dimensional structure of their dendrites and by the location of input synapses on specific parts of their dendrites. However, only a few examples exist of dendritic architecture which can be related to behaviorally relevant computations of a neuron. By combining genetic, immunohistochemical and confocal laser scanning methods this study estimates the location of the spike-initiating zone and the dendritic distribution p  ...[more]

Similar Datasets

| S-EPMC4441823 | biostudies-literature
| S-EPMC5110636 | biostudies-literature
| S-EPMC2621164 | biostudies-literature
| S-EPMC8511456 | biostudies-literature
| S-EPMC2799885 | biostudies-other
| S-EPMC7286803 | biostudies-literature
| S-EPMC7210872 | biostudies-literature
| S-EPMC3786040 | biostudies-literature
| S-EPMC7750431 | biostudies-literature
| S-EPMC7612014 | biostudies-literature