ABSTRACT: Phenol is a major pollutant in aquatic ecosystems due to its chemical stability, water solubility and environmental mobility. To date, little is known about the molecular modifications of invertebrates under phenol stress. In the present study, we used Solexa sequencing technology to investigate the transcriptome and differentially expressed genes (DEGs) of midges (Chironomus kiinensis) in response to phenol stress. A total of 51,518,972 and 51,150,832 clean reads in the phenol-treated and control libraries, respectively, were obtained and assembled into 51,014 non-redundant (Nr) consensus sequences. A total of 6,032 unigenes were classified by Gene Ontology (GO), and 18,366 unigenes were categorized into 238 Kyoto Encyclopedia of Genes and Genomes (KEGG) categories. These genes included representatives from almost all functional categories. A total of 10,724 differentially expressed genes (P value <0.05) were detected in a comparative analysis of the expression profiles between phenol-treated and control C. kiinensis including 8,390 upregulated and 2,334 downregulated genes. The expression levels of 20 differentially expressed genes were confirmed by real-time RT-PCR, and the trends in gene expression that were observed matched the Solexa expression profiles, although the magnitude of the variations was different. Through pathway enrichment analysis, significantly enriched pathways were identified for the DEGs, including metabolic pathways, aryl hydrocarbon receptor (AhR), pancreatic secretion and neuroactive ligand-receptor interaction pathways, which may be associated with the phenol responses of C. kiinensis. Using Solexa sequencing technology, we identified several groups of key candidate genes as well as important biological pathways involved in the molecular modifications of chironomids under phenol stress.