Unknown

Dataset Information

0

Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment.


ABSTRACT: BACKGROUND:Understanding the effects of pretreatment on anaerobic digestion of sludge waste from wastewater treatment plants is becoming increasingly important, as impetus moves towards the utilization of sludge for renewable energy production. Although the field of sludge pretreatment has progressed significantly over the past decade, critical questions concerning the underlying microbial interactions remain unanswered. In this study, a metagenomic approach was adopted to investigate the microbial composition and gene content contributing to enhanced biogas production from sludge subjected to a novel pretreatment method (maintaining pH at 10 for 8 days) compared to other documented methods (ultrasonic, thermal and thermal-alkaline). RESULTS:Our results showed that pretreated sludge attained a maximum methane yield approximately 4-fold higher than that of the blank un-pretreated sludge set-up at day 17. Both the microbial and metabolic consortium shifted extensively towards enhanced biodegradation subsequent to pretreatment, providing insight for the enhanced methane yield. The prevalence of Methanosaeta thermophila and Methanothermobacter thermautotrophicus, together with the functional affiliation of enzymes-encoding genes suggested an acetoclastic and hydrogenotrophic methanogenesis pathway. Additionally, an alternative enzymology in Methanosaeta was observed. CONCLUSIONS:This study is the first to provide a microbiological understanding of improved biogas production subsequent to a novel waste sludge pretreatment method. The knowledge garnered will assist the design of more efficient pretreatment methods for biogas production in the future.

SUBMITTER: Wong MT 

PROVIDER: S-EPMC3607842 | biostudies-literature | 2013 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment.

Wong Mabel Ting MT   Zhang Dong D   Li Jun J   Hui Raymond Kin Hi RK   Tun Hein Min HM   Brar Manreetpal Singh MS   Park Tae-Jin TJ   Chen Yinguang Y   Leung Frederick C FC  

Biotechnology for biofuels 20130319 1


<h4>Background</h4>Understanding the effects of pretreatment on anaerobic digestion of sludge waste from wastewater treatment plants is becoming increasingly important, as impetus moves towards the utilization of sludge for renewable energy production. Although the field of sludge pretreatment has progressed significantly over the past decade, critical questions concerning the underlying microbial interactions remain unanswered. In this study, a metagenomic approach was adopted to investigate th  ...[more]

Similar Datasets

| S-EPMC9640319 | biostudies-literature
| S-EPMC10399201 | biostudies-literature
| S-EPMC4751509 | biostudies-literature
| PRJNA1181601 | ENA
| PRJNA886753 | ENA
| PRJNA992878 | ENA
| S-EPMC4146379 | biostudies-other
| S-EPMC10864876 | biostudies-literature
| S-EPMC8017613 | biostudies-literature
| S-EPMC7657636 | biostudies-literature