Ontology highlight
ABSTRACT: Background
The witches' broom disease is a plague caused by Moniliophthora perniciosa in the Theobroma cacao, which has been reducing the cocoa production since 1989. This issue motivated a genome project that has showing several new molecular targets, which can be developed inhibitors in order to control the plague. Among the molecular targets obtained, the UDP-N-acetylglucosamine pyrophosphorylase (UNAcP) is a key enzyme to construct the fungal cell wall. The inhibition of this enzyme results in the fungal cell death.Results
The results show that the molecular recognition of the enzyme with the substrates occurs mainly by hydrogen bonds between ligands and Arg116, Arg383, Gly381, and Lys408 amino acids; and few hydrophobic interactions with Tyr382 and Lys123 residues.Conclusions
Among the compounds analyzed, the NAG5 showed the best binding energy (-95.2 kcal/mol). The next steps for the control of witches' broom plague involve the synthesis and biological evaluation of these compounds, which are in progress.
SUBMITTER: Junior MC
PROVIDER: S-EPMC3610160 | biostudies-literature | 2013 Mar
REPOSITORIES: biostudies-literature
Chemistry Central journal 20130305 1
<h4>Background</h4>The witches' broom disease is a plague caused by Moniliophthora perniciosa in the Theobroma cacao, which has been reducing the cocoa production since 1989. This issue motivated a genome project that has showing several new molecular targets, which can be developed inhibitors in order to control the plague. Among the molecular targets obtained, the UDP-N-acetylglucosamine pyrophosphorylase (UNAcP) is a key enzyme to construct the fungal cell wall. The inhibition of this enzyme ...[more]