Unknown

Dataset Information

0

Stability and responsiveness in a self-organized living architecture.


ABSTRACT: Robustness and adaptability are central to the functioning of biological systems, from gene networks to animal societies. Yet the mechanisms by which living organisms achieve both stability to perturbations and sensitivity to input are poorly understood. Here, we present an integrated study of a living architecture in which army ants interconnect their bodies to span gaps. We demonstrate that these self-assembled bridges are a highly effective means of maintaining traffic flow over unpredictable terrain. The individual-level rules responsible depend only on locally-estimated traffic intensity and the number of neighbours to which ants are attached within the structure. We employ a parameterized computational model to reveal that bridges are tuned to be maximally stable in the face of regular, periodic fluctuations in traffic. However analysis of the model also suggests that interactions among ants give rise to feedback processes that result in bridges being highly responsive to sudden interruptions in traffic. Subsequent field experiments confirm this prediction and thus the dual nature of stability and flexibility in living bridges. Our study demonstrates the importance of robust and adaptive modular architecture to efficient traffic organisation and reveals general principles regarding the regulation of form in biological self-assemblies.

SUBMITTER: Garnier S 

PROVIDER: S-EPMC3610604 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Stability and responsiveness in a self-organized living architecture.

Garnier Simon S   Murphy Tucker T   Lutz Matthew M   Hurme Edward E   Leblanc Simon S   Couzin Iain D ID  

PLoS computational biology 20130328 3


Robustness and adaptability are central to the functioning of biological systems, from gene networks to animal societies. Yet the mechanisms by which living organisms achieve both stability to perturbations and sensitivity to input are poorly understood. Here, we present an integrated study of a living architecture in which army ants interconnect their bodies to span gaps. We demonstrate that these self-assembled bridges are a highly effective means of maintaining traffic flow over unpredictable  ...[more]

Similar Datasets

| S-EPMC8292319 | biostudies-literature
| S-EPMC8782570 | biostudies-literature
| S-EPMC3310710 | biostudies-literature
| S-EPMC10104069 | biostudies-literature
| S-EPMC3097225 | biostudies-literature
| S-EPMC2605691 | biostudies-literature
| S-EPMC2795160 | biostudies-literature
| S-EPMC6403305 | biostudies-literature
| S-EPMC7865135 | biostudies-literature
| S-EPMC8289079 | biostudies-literature