Evolution of genomic imprinting as a coordinator of coadapted gene expression.
Ontology highlight
ABSTRACT: Genomic imprinting is an epigenetic phenomenon in which the expression of a gene copy inherited from the mother differs from that of the copy inherited from the father. Many imprinted genes appear to be highly interconnected through interactions mediated by proteins, RNA, and DNA. These kinds of interactions often favor the evolution of genetic coadaptation, where beneficially interacting alleles evolve to become coinherited. Here I demonstrate theoretically that the presence of gene interactions that favor coadaptation can also favor the evolution of genomic imprinting. Selection favors genomic imprinting because it coordinates the coexpression of positively interacting alleles at different loci. Evolution is expected to proceed through a scenario where selection builds associations between beneficial combinations of alleles and, if one locus evolves to become imprinted, it leads to selection for its interacting partners to match its pattern of imprinting. This process should favor the evolution of physical linkage between interacting genes and therefore may help explain why imprinted genes tend to be found in clusters. The model suggests that, whereas some genes are expected to evolve their imprinting status because selection directly favors a specific pattern of parent-of-origin-dependent expression, other genes may evolve imprinting as a coevolutionary response to match the expression pattern of their interacting partners. As a result, some genes will show phenotypic effects consistent with the predictions of models for the evolution of genomic imprinting (e.g., conflict models), but other genes may not, having simply evolved imprinting to follow the lead of their interacting partners.
SUBMITTER: Wolf JB
PROVIDER: S-EPMC3612623 | biostudies-literature | 2013 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA