Oct4 promoter activity in stem cells obtained through somatic reprogramming.
Ontology highlight
ABSTRACT: Multiple methods exist that can reprogram differentiated cells to a pluripotent state similar to that of embryonic stem cells (ESCs). These include somatic cell nuclear transfer (SCNT), fusion-mediated reprogramming (FMR) of somatic cells with ESCs, and the production of induced pluripotent stem cells (iPSCs). All of these methods yield cells in which the endogenous Oct4 gene is reactivated. We were interested in comparing the activity of the Oct4 promoter in three different classes of pluripotent cells, including normal ESCs, FMR cells (FMRCs), and iPSCs. We prepared cells of all three types that harbor a transgene composed of the mouse Oct4 promoter driving green fluorescent protein (Oct4-GFP). All cell derivations started with a characterized transgenic Oct4-GFP mouse, and from this we derived ESCs, FMRCs, and iPSCs with the Oct4-GFP transgene present in an identical genomic integration site in all three cell types. Using flow cytometry we assessed Oct4 promoter expression, cell cycle behavior, and differentiation kinetics. We found similar levels of GFP expression in all three cell types and no significant alterations in pluripotency or differentiation. Our results suggest that the pluripotent condition is a potent "local attractor" state, because it can be achieved through three vastly different avenues.
SUBMITTER: Krueger WH
PROVIDER: S-EPMC3616451 | biostudies-literature | 2013 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA