Nitrite signaling in pulmonary hypertension: mechanisms of bioactivation, signaling, and therapeutics.
Ontology highlight
ABSTRACT: Pulmonary arterial hypertension (PAH) is a disorder characterized by increased pulmonary vascular resistance and mean pulmonary artery pressure leading to impaired function of the right ventricle, reduced cardiac output, and death. An imbalance between vasoconstrictors and vasodilators plays an important role in the pathobiology of PAH.Nitric oxide (NO) is a potent vasodilator in the lung, whose bioavailability and signaling pathway are impaired in PAH. It is now appreciated that the oxidative product of NO metabolism, the inorganic anion nitrite (NO(2)(-)), functions as an intravascular endocrine reservoir of NO bioactivity that can be reduced back to NO under physiological and pathological hypoxia.The conversion of nitrite to NO is controlled by coupled electron and proton transfer reactions between heme- and molybdenum-containing proteins, such as hemoglobin and xanthine oxidase, and by simple protonation and disproportionation, and possibly by catalyzed disproportionation. The two major sources of nitrite (and nitrate) are the endogenous L-arginine-NO pathway, by oxidation of NO, and the diet, with conversion of nitrate from diet into nitrite by oral commensal bacteria. In the current article, we review the enzymatic formation of nitrite and the available data regarding its use as a therapy for PAH and other cardiovascular diseases.The successful efficacy demonstrated in several animal models and safety in early clinical trials suggest that nitrite may represent a promising new therapy for PAH.
SUBMITTER: Bueno M
PROVIDER: S-EPMC3619206 | biostudies-literature | 2013 May
REPOSITORIES: biostudies-literature
ACCESS DATA