Unknown

Dataset Information

0

Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets.


ABSTRACT:

Aims/hypothesis

To date, the molecular function of most of the reported type 2 diabetes-associated loci remains unknown. The introduction or removal of cytosine-phosphate-guanine (CpG) dinucleotides, which are possible sites of DNA methylation, has been suggested as a potential mechanism through which single-nucleotide polymorphisms (SNPs) can affect gene function via epigenetics. The aim of this study was to examine if any of 40 SNPs previously associated with type 2 diabetes introduce or remove a CpG site and if these CpG-SNPs are associated with differential DNA methylation in pancreatic islets of 84 human donors.

Methods

DNA methylation was analysed using pyrosequencing.

Results

We found that 19 of 40 (48%) type 2 diabetes-associated SNPs introduce or remove a CpG site. Successful DNA methylation data were generated for 16 of these 19 CpG-SNP loci, representing the candidate genes TCF7L2, KCNQ1, PPARG, HHEX, CDKN2A, SLC30A8, DUSP9, CDKAL1, ADCY5, SRR, WFS1, IRS1, DUSP8, HMGA2, TSPAN8 and CHCHD9. All analysed CpG-SNPs were associated with differential DNA methylation of the CpG-SNP site in human islets. Moreover, six CpG-SNPs, representing TCF7L2, KCNQ1, CDKN2A, ADCY5, WFS1 and HMGA2, were also associated with DNA methylation of surrounding CpG sites. Some of the type 2 diabetes CpG-SNP sites that exhibit differential DNA methylation were further associated with gene expression, alternative splicing events determined by splice index, and hormone secretion in the human islets. The 19 type 2 diabetes-associated CpG-SNPs are in strong linkage disequilibrium (r² > 0.8) with a total of 295 SNPs, including 91 CpG-SNPs.

Conclusions/interpretation

Our results suggest that the introduction or removal of a CpG site may be a molecular mechanism through which some of the type 2 diabetes SNPs affect gene function via differential DNA methylation and consequently contributes to the phenotype of the disease.

SUBMITTER: Dayeh TA 

PROVIDER: S-EPMC3622750 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6742455 | biostudies-literature
| S-EPMC8064204 | biostudies-literature
| S-EPMC3321176 | biostudies-literature
2012-04-22 | E-GEOD-21232 | biostudies-arrayexpress
2012-04-23 | GSE21232 | GEO
| S-EPMC515109 | biostudies-literature
| S-EPMC3072418 | biostudies-literature
| S-EPMC6541967 | biostudies-literature
| S-EPMC3727960 | biostudies-literature
| S-EPMC8191311 | biostudies-literature