KSRP: a checkpoint for inflammatory cytokine production in astrocytes.
Ontology highlight
ABSTRACT: Chronic inflammation in the central nervous system (CNS) is a central feature of many neurodegenerative and autoimmune diseases. As an immunologically competent cell, the astrocyte plays an important role in CNS inflammation. It is capable of expressing a number of cytokines such as tumor necrosis factor alpha (TNF-?) and interleukin-1 beta (IL-1?) that promote inflammation directly and through the recruitment of immune cells. Checkpoints are therefore in place to keep tight control over cytokine production. Adenylate/uridylate-rich elements (ARE) in the 3' untranslated region of cytokine mRNAs serve as a major checkpoint by regulating mRNA stability and translational efficiency. Here, we examined the impact of KH-type splicing regulatory protein (KSRP), an RNA binding protein which destabilizes mRNAs via the ARE, on cytokine expression and paracrine phenotypes of primary astrocytes. We identified a network of inflammatory mediators, including TNF-? and IL-1?, whose expression increased 2 to 4-fold at the RNA level in astrocytes isolated from KSRP(-/-) mice compared to littermate controls. Upon activation, KSRP(-/-) astrocytes produced TNF-? and IL-1? at levels that exceeded control cells by 15-fold or more. Conditioned media from KSRP(-/-) astrocytes induced chemotaxis and neuronal cell death in vitro. Surprisingly, we observed a prolongation of half-life in only a subset of mRNA targets and only after selective astrocyte activation. Luciferase reporter studies indicated that KSRP regulates cytokine gene expression at both transcriptional and post-transcriptional levels. Our results outline a critical role for KSRP in regulating pro-inflammatory mediators and have implications for a wide range of CNS inflammatory and autoimmune diseases.
SUBMITTER: Li X
PROVIDER: S-EPMC3629690 | biostudies-literature | 2012 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA