Unknown

Dataset Information

0

Wolbachia from the planthopper Laodelphax striatellus establishes a robust, persistent, streptomycin-resistant infection in clonal mosquito cells.


ABSTRACT: The obligate intracellular bacterium, Wolbachia pipientis (Rickettsiales: Anaplasmataceae), distorts reproduction of its arthropod hosts to facilitate invasion of naïve populations. This property makes Wolbachia an attractive "gene drive" agent with potential applications in the control of insect vector populations. Genetic manipulation of Wolbachia will require in vitro systems for its propagation, genetic modification, amplification, and introduction into target insects. Here we show that Wolbachia from the planthopper, Laodelphax striatellus, establishes a robust infection in clonal C7-10 Aedes albopictus mosquito cells. Infected cells, designated C/wStr, expressed radiolabeled proteins that were enriched in cells grown in the absence of antibiotics that inhibit Wolbachia, relative to cultures grown in medium containing tetracycline and rifampicin. Using mass spectrometry, we verified that tryptic peptides from an upregulated 24 kDa band predominantly represented proteins encoded by the Wolbachia genome, including the outer surface protein, Wsp. We further showed that resistance of Wolbachia to streptomycin is associated with a K42R mutation in Wolbachia ribosomal protein S12, and that the pattern of amino acid substitutions in ribosomal protein S12 shows distinct differences in the closely related genera, Wolbachia and Rickettsia.

SUBMITTER: Fallon AM 

PROVIDER: S-EPMC3630504 | biostudies-literature | 2013 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Wolbachia from the planthopper Laodelphax striatellus establishes a robust, persistent, streptomycin-resistant infection in clonal mosquito cells.

Fallon A M AM   Baldridge G D GD   Higgins L A LA   Witthuhn B A BA  

In vitro cellular & developmental biology. Animal 20121228 1


The obligate intracellular bacterium, Wolbachia pipientis (Rickettsiales: Anaplasmataceae), distorts reproduction of its arthropod hosts to facilitate invasion of naïve populations. This property makes Wolbachia an attractive "gene drive" agent with potential applications in the control of insect vector populations. Genetic manipulation of Wolbachia will require in vitro systems for its propagation, genetic modification, amplification, and introduction into target insects. Here we show that Wolb  ...[more]

Similar Datasets

| S-EPMC6668040 | biostudies-literature
| S-EPMC5740986 | biostudies-literature
2024-11-18 | GSE281742 | GEO
| S-EPMC4174806 | biostudies-literature
| S-EPMC5835671 | biostudies-literature
| S-EPMC7333401 | biostudies-literature
| S-EPMC9008957 | biostudies-literature
| S-EPMC6034074 | biostudies-literature
| S-EPMC4309506 | biostudies-literature
| PRJNA717323 | ENA