Detection of CEBPA double mutants in acute myeloid leukemia using a custom gene expression array.
Ontology highlight
ABSTRACT: Double (bi-allelic) mutations in the gene encoding the CCAAT/enhancer-binding protein-alpha (CEBPA) transcription factor have a favorable prognostic impact in acute myeloid leukemia (AML). Double mutations in CEBPA can be detected using various techniques, but it is a notoriously difficult gene to sequence due to its high GC-content. Here we developed a two-step gene expression classifier for accurate and standardized detection of CEBPA double mutations. The key feature of the two-step classifier is that it explicitly removes cases with low CEBPA expression, thereby excluding CEBPA hypermethylated cases that have similar gene expression profiles as a CEBPA double mutant, which would result in false-positive predictions. In the second step, we have developed a 55 gene signature to identity the true CEBPA double-mutation cases. This two-step classifier was tested on a cohort of 505 unselected AML cases, including 26 CEBPA double mutants, 12 CEBPA single mutants, and seven CEBPA promoter hypermethylated cases, on which its performance was estimated by a double-loop cross-validation protocol. The two-step classifier achieves a sensitivity of 96.2% (95% confidence interval [CI] 81.1 to 99.3) and specificity of 100.0% (95% CI 99.2 to 100.0). There are no false-positive detections. This two-step CEBPA double-mutation classifier has been incorporated on a microarray platform that can simultaneously detect other relevant molecular biomarkers, which allows for a standardized comprehensive diagnostic assay. In conclusion, gene expression profiling provides a reliable method for CEBPA double-mutation detection in patients with AML for clinical use.
SUBMITTER: van Vliet MH
PROVIDER: S-EPMC3634142 | biostudies-literature | 2013 May
REPOSITORIES: biostudies-literature
ACCESS DATA