Unknown

Dataset Information

0

C-terminal interactions mediate the quaternary dynamics of ?B-crystallin.


ABSTRACT: ?B-crystallin is a highly dynamic, polydisperse small heat-shock protein that can form oligomers ranging in mass from 200 to 800 kDa. Here we use a multifaceted mass spectrometry approach to assess the role of the C-terminal tail in the self-assembly of ?B-crystallin. Titration experiments allow us to monitor the binding of peptides representing the C-terminus to the ?B-crystallin core domain, and observe individual affinities to both monomeric and dimeric forms. Notably, we find that binding the second peptide equivalent to the core domain dimer is considerably more difficult than the first, suggesting a role of the C-terminus in regulating assembly. This finding motivates us to examine the effect of point mutations in the C-terminus in the full-length protein, by quantifying the changes in oligomeric distribution and corresponding subunit exchange rates. Our results combine to demonstrate that alterations in the C-terminal tail have a significant impact on the thermodynamics and kinetics of ?B-crystallin. Remarkably, we find that there is energy compensation between the inter- and intra-dimer interfaces: when one interaction is weakened, the other is strengthened. This allosteric communication between binding sites on ?B-crystallin is likely important for its role in binding target proteins.

SUBMITTER: Hilton GR 

PROVIDER: S-EPMC3638394 | biostudies-literature | 2013 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

C-terminal interactions mediate the quaternary dynamics of αB-crystallin.

Hilton Gillian R GR   Hochberg Georg K A GK   Laganowsky Arthur A   McGinnigle Scott I SI   Baldwin Andrew J AJ   Benesch Justin L P JL  

Philosophical transactions of the Royal Society of London. Series B, Biological sciences 20130325 1617


αB-crystallin is a highly dynamic, polydisperse small heat-shock protein that can form oligomers ranging in mass from 200 to 800 kDa. Here we use a multifaceted mass spectrometry approach to assess the role of the C-terminal tail in the self-assembly of αB-crystallin. Titration experiments allow us to monitor the binding of peptides representing the C-terminus to the αB-crystallin core domain, and observe individual affinities to both monomeric and dimeric forms. Notably, we find that binding th  ...[more]

Similar Datasets

| S-EPMC7380184 | biostudies-literature
| S-EPMC1185207 | biostudies-other
| S-EPMC6954717 | biostudies-literature
| S-EPMC3253074 | biostudies-literature
| S-EPMC2694337 | biostudies-literature
| S-EPMC5790409 | biostudies-literature
| S-EPMC6047474 | biostudies-literature
| S-EPMC2764403 | biostudies-literature
| S-EPMC6691212 | biostudies-literature
| S-EPMC4313936 | biostudies-literature