Unknown

Dataset Information

0

Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms.


ABSTRACT: BACKGROUND:In recent years biogas plants in Germany have been supposed to be involved in amplification and dissemination of pathogenic bacteria causing severe infections in humans and animals. In particular, biogas plants are discussed to contribute to the spreading of Escherichia coli infections in humans or chronic botulism in cattle caused by Clostridium botulinum. Metagenome datasets of microbial communities from an agricultural biogas plant as well as from anaerobic lab-scale digesters operating at different temperatures and conditions were analyzed for the presence of putative pathogenic bacteria and virulence determinants by various bioinformatic approaches. RESULTS:All datasets featured a low abundance of reads that were taxonomically assigned to the genus Escherichia or further selected genera comprising pathogenic species. Higher numbers of reads were taxonomically assigned to the genus Clostridium. However, only very few sequences were predicted to originate from pathogenic clostridial species. Moreover, mapping of metagenome reads to complete genome sequences of selected pathogenic bacteria revealed that not the pathogenic species itself, but only species that are more or less related to pathogenic ones are present in the fermentation samples analyzed. Likewise, known virulence determinants could hardly be detected. Only a marginal number of reads showed similarity to sequences described in the Microbial Virulence Database MvirDB such as those encoding protein toxins, virulence proteins or antibiotic resistance determinants. CONCLUSIONS:Findings of this first study of metagenomic sequence reads of biogas producing microbial communities suggest that the risk of dissemination of pathogenic bacteria by application of digestates from biogas fermentations as fertilizers is low, because obtained results do not indicate the presence of putative pathogenic microorganisms in the samples analyzed.

SUBMITTER: Eikmeyer FG 

PROVIDER: S-EPMC3639179 | biostudies-literature | 2013 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms.

Eikmeyer Felix G FG   Rademacher Antje A   Hanreich Angelika A   Hennig Magdalena M   Jaenicke Sebastian S   Maus Irena I   Wibberg Daniel D   Zakrzewski Martha M   Pühler Alfred A   Klocke Michael M   Schlüter Andreas A  

Biotechnology for biofuels 20130404 1


<h4>Background</h4>In recent years biogas plants in Germany have been supposed to be involved in amplification and dissemination of pathogenic bacteria causing severe infections in humans and animals. In particular, biogas plants are discussed to contribute to the spreading of Escherichia coli infections in humans or chronic botulism in cattle caused by Clostridium botulinum. Metagenome datasets of microbial communities from an agricultural biogas plant as well as from anaerobic lab-scale digest  ...[more]

Similar Datasets

| S-EPMC6010159 | biostudies-literature
| S-EPMC5959977 | biostudies-literature
| S-EPMC3027613 | biostudies-literature
| S-EPMC9655821 | biostudies-literature
| S-EPMC6203818 | biostudies-literature
| S-EPMC10567828 | biostudies-literature
| S-EPMC4200192 | biostudies-literature
| PRJEB7938 | ENA
| S-EPMC9337220 | biostudies-literature
| S-EPMC6981860 | biostudies-literature