Slug increases sensitivity to tubulin-binding agents via the downregulation of ?III and ?IVa-tubulin in lung cancer cells.
Ontology highlight
ABSTRACT: Transcription factor Slug/SNAI2 (snail homolog 2) plays a key role in the induction of the epithelial mesenchymal transition in cancer cells; however, whether the overexpression of Slug mediates the malignant phenotype and alters drug sensitivity in lung cancer cells remains largely unclear. We investigated Slug focusing on its biological function and involvement in drug sensitivity in lung cancer cells. Stable Slug transfectants showed typical morphological changes compared with control cells. Slug overexpression did not change the cellular proliferations; however, migration activity and anchorage-independent growth activity with an antiapoptotic effect were increased. Interestingly, stable Slug overexpression increased drug sensitivity to tubulin-binding agents including vinorelbine, vincristine, and paclitaxel (5.8- to 8.9-fold increase) in several lung cancer cell lines but did not increase sensitivity to agents other than tubulin-binding agents. Real-time RT-PCR (polymerase chain reaction) and western blotting revealed that Slug overexpression downregulated the expression of ?III and ?IVa-tubulin, which is considered to be a major factor determining sensitivity to tubulin-binding agents. A luciferase reporter assay confirmed that Slug suppressed the promoter activity of ?IVa-tubulin at a transcriptional level. Slug overexpression enhanced tumor growth, whereas Slug overexpression increased drug sensitivity to vinorelbine with the downregulation of ?III and ?IV-tubulin in vivo. Immunohistochemistry of Slug with clinical lung cancer samples showed that Slug overexpression tended to be involved in response to tubulin-binding agents. In conclusion, our data indicate that Slug mediates an aggressive phenotype including enhanced migration activity, anoikis suppression, and tumor growth, but increases sensitivity to tubulin-binding agents via the downregulation of ?III and ?IVa-tubulin in lung cancer cells.
SUBMITTER: Tamura D
PROVIDER: S-EPMC3639653 | biostudies-literature | 2013 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA