Unknown

Dataset Information

0

Rapid discrimination of Haemophilus influenzae, H. parainfluenzae, and H. haemolyticus by fluorescence in situ hybridization (FISH) and two matrix-assisted laser-desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) platforms.


ABSTRACT:

Background

Due to considerable differences in pathogenicity, Haemophilus influenzae, H. parainfluenzae and H. haemolyticus have to be reliably discriminated in routine diagnostics. Retrospective analyses suggest frequent misidentifications of commensal H. haemolyticus as H. influenzae. In a multi-center approach, we assessed the suitability of fluorescence in situ hybridization (FISH) and matrix-assisted laser-desorption-ionization time-of-flight mass-spectrometry (MALDI-TOF-MS) for the identification of H. influenzae, H. parainfluenzae and H. haemolyticus to species level.

Methodology

A strain collection of 84 Haemophilus spp. comprising 50 H. influenzae, 25 H. parainfluenzae, 7 H. haemolyticus, and 2 H. parahaemolyticus including 77 clinical isolates was analyzed by FISH with newly designed DNA probes, and two different MALDI-TOF-MS systems (Bruker, Shimadzu) with and without prior formic acid extraction.

Principal findings

Among the 84 Haemophilus strains analyzed, FISH led to 71 correct results (85%), 13 uninterpretable results (15%), and no misidentifications. Shimadzu MALDI-TOF-MS resulted in 59 correct identifications (70%), 19 uninterpretable results (23%), and 6 misidentifications (7%), using colony material applied directly. Bruker MALDI-TOF-MS with prior formic acid extraction led to 74 correct results (88%), 4 uninterpretable results (5%) and 6 misidentifications (7%). The Bruker MALDI-TOF-MS misidentifications could be resolved by the addition of a suitable H. haemolyticus reference spectrum to the system's database. In conclusion, no analyzed diagnostic procedure was free of errors. Diagnostic results have to be interpreted carefully and alternative tests should be applied in case of ambiguous test results on isolates from seriously ill patients.

SUBMITTER: Frickmann H 

PROVIDER: S-EPMC3639997 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Rapid discrimination of Haemophilus influenzae, H. parainfluenzae, and H. haemolyticus by fluorescence in situ hybridization (FISH) and two matrix-assisted laser-desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) platforms.

Frickmann Hagen H   Christner Martin M   Donat Martina M   Berger Anja A   Essig Andreas A   Podbielski Andreas A   Hagen Ralf Matthias RM   Poppert Sven S  

PloS one 20130430 4


<h4>Background</h4>Due to considerable differences in pathogenicity, Haemophilus influenzae, H. parainfluenzae and H. haemolyticus have to be reliably discriminated in routine diagnostics. Retrospective analyses suggest frequent misidentifications of commensal H. haemolyticus as H. influenzae. In a multi-center approach, we assessed the suitability of fluorescence in situ hybridization (FISH) and matrix-assisted laser-desorption-ionization time-of-flight mass-spectrometry (MALDI-TOF-MS) for the  ...[more]

Similar Datasets

| S-EPMC3573053 | biostudies-literature
| S-EPMC5823330 | biostudies-literature
| S-EPMC4213803 | biostudies-literature
| S-EPMC7823262 | biostudies-literature
| S-EPMC6224550 | biostudies-literature
| S-EPMC6056354 | biostudies-literature
| S-EPMC4536233 | biostudies-literature
| S-EPMC4223412 | biostudies-literature
| S-EPMC3560977 | biostudies-literature
| S-EPMC3838037 | biostudies-literature