Ontology highlight
ABSTRACT: Background
Basic research toward understanding and treating disc pathology in the spine has utilized numerous animal models, with delivery of small molecules, purified factors, and genes of interest. To date, gene delivery to the rat lumbar spine has only been described utilizing genetically programmed cells in a matrix which has required partial disc excision, and expected limitation of treatment diffusion into the disc.Purpose
This study was designed to develop and describe a surgical technique for lumbar spine exposure and disc space preparation, and use of a matrix-free method for gene delivery.Methods
Naïve or genetically programmed isogeneic bone marrow stromal cells were surgically delivered to adolescent male Lewis rat lumbar discs, and utilizing quantitative biochemical and qualitative immunohistological assessments, the implanted cells were detected 3 days post-procedure.Results
Statistically significant differences were noted for recovery of the β-galactosidase marker gene comparing delivery of naïve or labeled cells (10(5) cells per disc) from the site of implantation, and between delivery of 10(5) or 10(6) labeled cells per disc at the site of implantation and the adjacent vertebral body. Immunohistology confirmed that the β-galactosidase marker was detected in the adjacent vertebra bone in the zone of surgical implantation.Conclusions
The model requires further testing in larger cohorts and with biologically active genes of interest, but the observations from the pilot experiments are very encouraging that this will be a useful comparative model for basic spine research involving gene or cell delivery, or other locally delivered therapies to the intervertebral disc or adjacent vertebral bodies in rats.
SUBMITTER: Damle SR
PROVIDER: S-EPMC3640714 | biostudies-literature | 2013 Feb
REPOSITORIES: biostudies-literature
Damle Sheela R SR Rawlins Bernard A BA Boachie-Adjei Oheneba O Crystal Ronald G RG Hidaka Chisa C Cunningham Matthew E ME
HSS journal : the musculoskeletal journal of Hospital for Special Surgery 20130108 1
<h4>Background</h4>Basic research toward understanding and treating disc pathology in the spine has utilized numerous animal models, with delivery of small molecules, purified factors, and genes of interest. To date, gene delivery to the rat lumbar spine has only been described utilizing genetically programmed cells in a matrix which has required partial disc excision, and expected limitation of treatment diffusion into the disc.<h4>Purpose</h4>This study was designed to develop and describe a s ...[more]