Unknown

Dataset Information

0

Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes.


ABSTRACT: How the glucocorticoid receptor (GR) activates some genes while potently repressing others remains an open question. There are three current models for suppression: transrepression via GR tethering to AP-1/NF-?B sites, direct GR association with inhibitory elements (nGREs), and GR recruitment of the corepressor GRIP1. To gain insights into GR suppression, we used genomic analyses and genome-wide profiling of GR, p65, and c-Jun in LPS-stimulated macrophages. We show that GR mediates both activation and repression at tethered sites, GREs, and GRIP1-bound elements, indicating that motif classification is insufficient to predict regulatory polarity of GR binding. Interestingly, sites of GR repression utilize GRIP1's corepressor function and display reduced histone acetylation. Together, these findings suggest that while GR occupancy confers hormone responsiveness, the receptor itself may not participate in the regulatory effects. Furthermore, transcriptional outcome is not established by sequence but is influenced by epigenetic regulators, context, and other unrecognized regulatory determinants.

SUBMITTER: Uhlenhaut NH 

PROVIDER: S-EPMC3640846 | biostudies-literature | 2013 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes.

Uhlenhaut N Henriette NH   Barish Grant D GD   Yu Ruth T RT   Downes Michael M   Karunasiri Malith M   Liddle Christopher C   Schwalie Petra P   Hübner Norbert N   Evans Ronald M RM  

Molecular cell 20121115 1


How the glucocorticoid receptor (GR) activates some genes while potently repressing others remains an open question. There are three current models for suppression: transrepression via GR tethering to AP-1/NF-κB sites, direct GR association with inhibitory elements (nGREs), and GR recruitment of the corepressor GRIP1. To gain insights into GR suppression, we used genomic analyses and genome-wide profiling of GR, p65, and c-Jun in LPS-stimulated macrophages. We show that GR mediates both activati  ...[more]

Similar Datasets

| S-EPMC6911175 | biostudies-literature
| S-ECPF-GEOD-46440 | biostudies-other
| S-EPMC7299821 | biostudies-literature
| S-EPMC4242289 | biostudies-literature
| S-EPMC3519639 | biostudies-literature
| S-EPMC9274455 | biostudies-literature
| S-EPMC7414755 | biostudies-literature
| S-ECPF-GEOD-18166 | biostudies-other
| S-EPMC1295595 | biostudies-literature
2021-06-01 | GSE168767 | GEO