Unknown

Dataset Information

0

Transcriptome of the Lymantria dispar (gypsy moth) larval midgut in response to infection by Bacillus thuringiensis.


ABSTRACT: Transcriptomic profiles of the serious lepidopteran insect pest Lymantria dispar (gypsy moth) were characterized in the larval midgut in response to infection by Bacillus thuringiensis kurstaki, a biopesticide commonly used for its control. RNA-Seq approaches were used to define a set of 49,613 assembled transcript sequences, of which 838, 1,248 and 3,305 were respectively partitioned into high-, mid- and low-quality tiers on the basis of homology information. Digital gene expression profiles suggested genes differentially expressed at 24 hours post infection, and qRT-PCR analyses were performed for verification. The differentially expressed genes primarily associated with digestive function, including ?-amylase, lipase and carboxypeptidase; immune response, including C-type lectin 4; developmental genes such as arylphorin; as well as a variety of binding proteins: cellular retinoic acid binding protein (lipid-binding), insulin-related peptide binding protein (protein-binding) and ovary C/EBPg transcription factor (nucleic acid-binding). This is the first study conducted to specifically investigate gypsy moth response to a bacterial infection challenge using large-scale sequencing technologies, and the results highlight important genes that could be involved in biopesticide resistance development or could serve as targets for biologically-based control mechanisms of this insect pest.

SUBMITTER: Sparks ME 

PROVIDER: S-EPMC3641027 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Transcriptome of the Lymantria dispar (gypsy moth) larval midgut in response to infection by Bacillus thuringiensis.

Sparks Michael E ME   Blackburn Michael B MB   Kuhar Daniel D   Gundersen-Rindal Dawn E DE  

PloS one 20130501 5


Transcriptomic profiles of the serious lepidopteran insect pest Lymantria dispar (gypsy moth) were characterized in the larval midgut in response to infection by Bacillus thuringiensis kurstaki, a biopesticide commonly used for its control. RNA-Seq approaches were used to define a set of 49,613 assembled transcript sequences, of which 838, 1,248 and 3,305 were respectively partitioned into high-, mid- and low-quality tiers on the basis of homology information. Digital gene expression profiles su  ...[more]

Similar Datasets

| S-EPMC3183894 | biostudies-literature
| S-EPMC3064761 | biostudies-literature
| S-EPMC4466458 | biostudies-literature
| S-EPMC8496242 | biostudies-literature
| S-EPMC4604033 | biostudies-literature
| S-EPMC2873493 | biostudies-literature
| S-EPMC6586621 | biostudies-literature
| S-EPMC3421229 | biostudies-literature
| S-EPMC4299897 | biostudies-literature
| S-EPMC5660218 | biostudies-literature