Unknown

Dataset Information

0

Targeting mitochondrial STAT3 with the novel phospho-valproic acid (MDC-1112) inhibits pancreatic cancer growth in mice.


ABSTRACT: New agents are needed to treat pancreatic cancer, one of the most lethal human malignancies. We synthesized phospho-valproic acid, a novel valproic acid derivative, (P-V; MDC-1112) and evaluated its efficacy in the control of pancreatic cancer. P-V inhibited the growth of human pancreatic cancer xenografts in mice by 60%-97%, and 100% when combined with cimetidine. The dominant molecular target of P-V was STAT3. P-V inhibited the phosphorylation of JAK2 and Src, and the Hsp90-STAT3 association, suppressing the activating phosphorylation of STAT3, which in turn reduced the expression of STAT3-dependent proteins Bcl-xL, Mcl-1 and survivin. P-V also reduced STAT3 levels in the mitochondria by preventing its translocation from the cytosol, and enhanced the mitochondrial levels of reactive oxygen species, which triggered apoptosis. Inhibition of mitochondrial STAT3 by P-V was required for its anticancer effect; mitochondrial STAT3 overexpression rescued animals from the tumor growth inhibition by P-V. Our results indicate that P-V is a promising candidate drug against pancreatic cancer and establish mitochondrial STAT3 as its key molecular target.

SUBMITTER: Mackenzie GG 

PROVIDER: S-EPMC3641121 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Targeting mitochondrial STAT3 with the novel phospho-valproic acid (MDC-1112) inhibits pancreatic cancer growth in mice.

Mackenzie Gerardo G GG   Huang Liqun L   Alston Ninche N   Ouyang Nengtai N   Vrankova Kvetoslava K   Mattheolabakis George G   Constantinides Panayiotis P PP   Rigas Basil B  

PloS one 20130501 5


New agents are needed to treat pancreatic cancer, one of the most lethal human malignancies. We synthesized phospho-valproic acid, a novel valproic acid derivative, (P-V; MDC-1112) and evaluated its efficacy in the control of pancreatic cancer. P-V inhibited the growth of human pancreatic cancer xenografts in mice by 60%-97%, and 100% when combined with cimetidine. The dominant molecular target of P-V was STAT3. P-V inhibited the phosphorylation of JAK2 and Src, and the Hsp90-STAT3 association,  ...[more]

Similar Datasets

| S-EPMC7967702 | biostudies-literature
| S-EPMC7951062 | biostudies-literature
| S-EPMC4930743 | biostudies-literature
| S-EPMC3419440 | biostudies-literature
| S-EPMC5364405 | biostudies-literature
| S-EPMC7704752 | biostudies-literature
| S-EPMC5006213 | biostudies-literature
| S-EPMC6571093 | biostudies-literature
| S-EPMC5852381 | biostudies-literature
| S-EPMC3477158 | biostudies-literature