Unknown

Dataset Information

0

Perioperative plasma F(2)-Isoprostane levels correlate with markers of impaired ventilation in infants with single-ventricle physiology undergoing stage 2 surgical palliation on the cardiopulmonary bypass.


ABSTRACT: Cardiopulmonary bypass (CPB) produces inflammation and oxidative stress, which contribute to postoperative complications after cardiac surgery. F(2)-Isoprostanes (F(2)-IsoPs) are products of lipid oxidative injury and represent the most accurate markers of oxidative stress. In adults undergoing cardiac surgery, CPB is associated with elevated IsoPs. The relationship between F(2)-IsoPs and perioperative end-organ function in infants with single-ventricle physiology, however, has not been well studied. This study prospectively enrolled 20 infants (ages 3-12 months) with univentricular physiology undergoing elective stage 2 palliation (bidirectional cavopulmonary anastomosis). Blood samples were collected before the surgical incision (T0), 30 min after initiation of CPB (T1), immediately after separation from CPB (T2), and 24 h postoperatively (T3). Plasma F(2)-IsoP levels were measured at each time point and correlated with indices of pulmonary function and other relevant clinical variables. Plasma F(2)-IsoPs increased significantly during surgery, with highest levels seen immediately after separation from CPB (p < 0.001). After separation from CPB, increased F(2)-IsoP was associated with lower arterial pH (? = -0.564; p = 0.012), higher partial pressure of carbon dioxide (PaCO(2); ? = 0.633; p = 0.004), and decreased lung compliance (? = -0.783; p ? 0.001). After CPB, F(2)-IsoPs did not correlate with duration of CPB, arterial lactate, or immediate postoperative outcomes. In infants with single-ventricle physiology, CPB produces oxidative stress, as quantified by elevated F(2)-IsoP levels. Increased F(2)-IsoP levels correlated with impaired ventilation in the postoperative period. The extent to which F(2)-IsoPs and other bioactive products of lipid oxidative injury might predict or contribute to organ-specific stress warrants further investigation.

SUBMITTER: Albers E 

PROVIDER: S-EPMC3641818 | biostudies-literature | 2012 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Perioperative plasma F(2)-Isoprostane levels correlate with markers of impaired ventilation in infants with single-ventricle physiology undergoing stage 2 surgical palliation on the cardiopulmonary bypass.

Albers Erin E   Donahue Brian S BS   Milne Ginger G   Saville Benjamin R BR   Wang Wenli W   Bichell David D   McLaughlin BethAnn B  

Pediatric cardiology 20120212 4


Cardiopulmonary bypass (CPB) produces inflammation and oxidative stress, which contribute to postoperative complications after cardiac surgery. F(2)-Isoprostanes (F(2)-IsoPs) are products of lipid oxidative injury and represent the most accurate markers of oxidative stress. In adults undergoing cardiac surgery, CPB is associated with elevated IsoPs. The relationship between F(2)-IsoPs and perioperative end-organ function in infants with single-ventricle physiology, however, has not been well stu  ...[more]

Similar Datasets

| S-EPMC9784092 | biostudies-literature
| S-EPMC3415287 | biostudies-literature
| S-EPMC9373507 | biostudies-literature
| S-EPMC4338200 | biostudies-literature
| S-EPMC9172263 | biostudies-literature
| S-EPMC5712097 | biostudies-literature
| S-EPMC5371497 | biostudies-literature
2010-05-27 | E-GEOD-924 | biostudies-arrayexpress
2003-12-20 | GSE924 | GEO
| S-EPMC5463370 | biostudies-literature