Unknown

Dataset Information

0

High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach.


ABSTRACT: Sulfur is an exciting cathode material with high specific capacity of 1,673 mAh/g, more than five times the theoretical limits of its transition metal oxides counterpart. However, successful applications of sulfur cathode have been impeded by rapid capacity fading caused by multiple mechanisms, including large volume expansion during lithiation, dissolution of intermediate polysulfides, and low ionic/electronic conductivity. Tackling the sulfur cathode problems requires a multifaceted approach, which can simultaneously address the challenges mentioned above. Herein, we present a scalable, room temperature, one-step, bottom-up approach to fabricate monodisperse polymer (polyvinylpyrrolidone)-encapsulated hollow sulfur nanospheres for sulfur cathode, allowing unprecedented control over electrode design from nanoscale to macroscale. We demonstrate high specific discharge capacities at different current rates (1,179, 1,018, and 990 mAh/g at C/10, C/5, and C/2, respectively) and excellent capacity retention of 77.6% (at C/5) and 73.4% (at C/2) after 300 and 500 cycles, respectively. Over a long-term cycling of 1,000 cycles at C/2, a capacity decay as low as 0.046% per cycle and an average coulombic efficiency of 98.5% was achieved. In addition, a simple modification on the sulfur nanosphere surface with a layer of conducting polymer, poly(3,4-ethylenedioxythiophene), allows the sulfur cathode to achieve excellent high-rate capability, showing a high reversible capacity of 849 and 610 mAh/g at 2C and 4C, respectively.

SUBMITTER: Li W 

PROVIDER: S-EPMC3645569 | biostudies-literature | 2013 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach.

Li Weiyang W   Zheng Guangyuan G   Yang Yuan Y   Seh Zhi Wei ZW   Liu Nian N   Cui Yi Y  

Proceedings of the National Academy of Sciences of the United States of America 20130415 18


Sulfur is an exciting cathode material with high specific capacity of 1,673 mAh/g, more than five times the theoretical limits of its transition metal oxides counterpart. However, successful applications of sulfur cathode have been impeded by rapid capacity fading caused by multiple mechanisms, including large volume expansion during lithiation, dissolution of intermediate polysulfides, and low ionic/electronic conductivity. Tackling the sulfur cathode problems requires a multifaceted approach,  ...[more]

Similar Datasets

| S-EPMC4906167 | biostudies-literature
| S-EPMC6155237 | biostudies-literature
| S-EPMC5740671 | biostudies-literature
| S-EPMC8787391 | biostudies-literature
| S-EPMC5595856 | biostudies-other
| S-EPMC4848474 | biostudies-literature
| S-EPMC10789113 | biostudies-literature
| S-EPMC5167400 | biostudies-literature
| S-EPMC7201250 | biostudies-literature
| S-EPMC6724479 | biostudies-literature