Project description:Salmonella enterica serovar Typhimurium (S. Typhimurium) definitive phage type 104 (DT104) has caused significant morbidity and mortality in humans and animals for almost three decades. We have completed the full DNA sequence of one DT104 strain, NCTC13348 and show that the main differences between the genome of this isolate and the previously sequenced S. Typhimurium LT2 lie in integrated prophage elements and the Salmonella Genomic Island 1 encoding antibiotic resistance genes. Thirteen isolates of S. Typhimurium DT104 with different pulsed field gel electrophoresis (PFGE) profiles were analyzed by multi locus sequence typing (MLST), plasmid profiling, hybridization to a Pan-Salmonella DNA microarray and prophage-based multiplex PCR. All the isolates belonged to a single MLST type ST19. Microarray data demonstrated that the 13 DT104 isolates were remarkably conserved in gene content. The PFGE band-size differences in these isolates could be explained to a great extent by changes in prophage and plasmid content. Thus, here the nature of variation in different S. Typhimurium DT104 isolates is further defined at the genome level illustrating how this phage type is evolving over time.
Project description:Here, we report the genome of phage SAP012, which was isolated against Salmonella enterica serovar Typhimurium. The SAP012 genome is 59,618 bp, with a G+C content of 56.2% and with no antibiotic resistance or virulence genes, and is quite similar at the nucleotide level to a number of previously sequenced Salmonella phage genomes, e.g., GenBank accession numbers KM366098.1 and KC139515.1.
Project description:Salmonella enterica serovar Typhimurium (S. Typhimurium) is a common cause of gastroenteritis in humans. Here, we report the draft genome sequences of 10 isolates of an S. Typhimurium phage type 135 variant that is linked to egg-associated outbreaks in Tasmania, Australia.
Project description:BackgroundSalmonella enterica serovar Typhimurium (or simply Typhimurium) is the most common serovar in both human infections and farm animals in Australia and many other countries. Typhimurium is a broad host range serovar but has also evolved into host-adapted variants (i.e. isolated from a particular host such as pigeons). Six Typhimurium strains of different phage types (defined by patterns of susceptibility to lysis by a set of bacteriophages) were analysed using Illumina high-throughput genome sequencing.ResultsVariations between strains were mainly due to single nucleotide polymorphisms (SNPs) with an average of 611 SNPs per strain, ranging from 391 SNPs to 922 SNPs. There were seven insertions/deletions (indels) involving whole or partial gene deletions, four inactivation events due to IS200 insertion and 15 pseudogenes due to early termination. Four of these inactivated or deleted genes may be virulence related. Nine prophage or prophage remnants were identified in the six strains. Gifsy-1, Gifsy-2 and the sopE2 and sspH2 phage remnants were present in all six genomes while Fels-1, Fels-2, ST64B, ST104 and CP4-57 were variably present. Four strains carried the 90-kb plasmid pSLT which contains several known virulence genes. However, two strains were found to lack the plasmid. In addition, one strain had a novel plasmid similar to Typhi strain CT18 plasmid pHCM2.ConclusionThe genome data suggest that variations between strains were mainly due to accumulation of SNPs, some of which resulted in gene inactivation. Unique genetic elements that were common between host-adapted phage types were not found. This study advanced our understanding on the evolution and adaptation of Typhimurium at genomic level.
Project description:It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella entericaserovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. We used whole-genome sequencing (WGS) and temporally structured sequence analysis within a Bayesian framework to reconstruct temporal and spatial phylogenetic trees and estimate the rates of mutation and divergence times of 315S Typhimurium DT104 isolates sampled from 1969 to 2012 from 21 countries on six continents. DT104 was estimated to have emerged initially as antimicrobial susceptible in ∼1948 (95% credible interval [CI], 1934 to 1962) and later became MDR DT104 in ∼1972 (95% CI, 1972 to 1988) through horizontal transfer of the 13-kb Salmonella genomic island 1 (SGI1) MDR region into susceptible strains already containing SGI1. This was followed by multiple transmission events, initially from central Europe and later between several European countries. An independent transmission to the United States and another to Japan occurred, and from there MDR DT104 was probably transmitted to Taiwan and Canada. An independent acquisition of resistance genes took place in Thailand in ∼1975 (95% CI, 1975 to 1990). In Denmark, WGS analysis provided evidence for transmission of the organism between herds of animals. Interestingly, the demographic history of Danish MDR DT104 provided evidence for the success of the program to eradicate Salmonellafrom pig herds in Denmark from 1996 to 2000. The results from this study refute several hypotheses on the evolution of DT104 and suggest that WGS may be useful in monitoring emerging clones and devising strategies for prevention of Salmonella infections.
Project description:Salmonella enterica serovar Typhimurium definitive type 2 (DT2) is host restricted to Columba livia (rock or feral pigeon) but is also closely related to S. Typhimurium isolates that circulate in livestock and cause a zoonosis characterized by gastroenteritis in humans. DT2 isolates formed a distinct phylogenetic cluster within S. Typhimurium based on whole-genome-sequence polymorphisms. Comparative genome analysis of DT2 94-213 and S. Typhimurium SL1344, DT104, and D23580 identified few differences in gene content with the exception of variations within prophages. However, DT2 94-213 harbored 22 pseudogenes that were intact in other closely related S. Typhimurium strains. We report a novel in silico approach to identify single amino acid substitutions in proteins that have a high probability of a functional impact. One polymorphism identified using this method, a single-residue deletion in the Tar protein, abrogated chemotaxis to aspartate in vitro. DT2 94-213 also exhibited an altered transcriptional profile in response to culture at 42°C compared to that of SL1344. Such differentially regulated genes included a number involved in flagellum biosynthesis and motility. IMPORTANCE Whereas Salmonella enterica serovar Typhimurium can infect a wide range of animal species, some variants within this serovar exhibit a more limited host range and altered disease potential. Phylogenetic analysis based on whole-genome sequences can identify lineages associated with specific virulence traits, including host adaptation. This study represents one of the first to link pathogen-specific genetic signatures, including coding capacity, genome degradation, and transcriptional responses to host adaptation within a Salmonella serovar. We performed comparative genome analysis of reference and pigeon-adapted definitive type 2 (DT2) S. Typhimurium isolates alongside phenotypic and transcriptome analyses, to identify genetic signatures linked to host adaptation within the DT2 lineage.
Project description:Multilocus sequence typing (MLST) is a relatively new high-resolution typing system employed for epidemiological studies of bacteria, including Salmonella. Discrimination based on MLST of housekeeping genes may be problematical, due to the high identity of gene sequences of closely related Salmonella species. The presence of genomic sequences derived from stable temperate phages in Salmonella offers an alternative for MLST of Salmonella. We have used MLST of prophage loci in Salmonella enterica serovar Typhimurium to discriminate closely related isolates of serovar Typhimurium. We have compared these results to MLST of five housekeeping genes, as well as pulsed-field gel electrophoresis (PFGE). The presence or absence of prophage loci in the 73 serovar Typhimurium isolates tested, as well as allelic variation as detected by sequencing, provided greater discrimination between isolates than either MLST of housekeeping genes or PFGE. Amplification of prophage loci alone separated serovar Typhimurium isolates into 27 groups comprising multiple isolates or individual strains. Sequencing of isolates found within the clusters separated isolates even further. By contrast, PFGE could only divide the 73 isolates into five distinct groups. MLST using housekeeping genes did not provide any significant separation of isolates in comparison to amplification or MLST of prophage loci. The results demonstrate that the amplification and sequencing of prophage loci provides a high-resolution, objective method for the discrimination of closely related isolates of serovar Typhimurium. It is proposed that multiple amplification of phage locus typing may provide sufficient discrimination for epidemiological purposes without recourse to MLST.
Project description:Salmonella enterica serovar Enteritidis has remained a major food-borne pathogen in humans. We isolated a virulent S. enterica serovar Enteritidis bacteriophage, SE2, which belongs to the family Siphoviridae. Phage SE2 could lyse S. enterica serovar Enteritidis PT-4, and its virulence was maintained even at ambient temperature. The genomic sequence of phage SE2 was composed of 43,221 bp with close similarity to those of Salmonella phage SETP3 and Salmonella phage SS3e. The strong and stable lytic activity of this phage might enable its use as a therapeutic or biocontrol agent against S. enterica serovar Enteritidis.
Project description:BackgroundAcquisition of IncI1 plasmids by members of the Enterobacteriaceae sometimes leads to transfer of antimicrobial resistance and colicinogeny as well as change of phage type in Salmonella Typhimurium. Isolates of S. Typhimurium from a 2015 outbreak of food poisoning were found to contain an IncI1 plasmid implicated in change of phage type from PT135a to U307 not previously reported. The origin of the changes of phage type associated with this IncI1 plasmid was investigated. In addition, a comparison of its gene composition with that of IncI1 plasmids found in local isolates of S. Typhimurium typed as U307 from other times was undertaken. This comparison was extended to IncI1 plasmids in isolates of phage types PT6 and PT6 var. 1 which are thought to be associated with acquisition of IncI1 plasmids.ResultsAnalysis of IncI1 plasmids from whole genome sequencing of isolates implicated a gene coding for a 1273 amino acid protein present only in U307 isolates as the likely source of change of phage type. The IncI1 plasmids from PT6 and PT6 var. 1 isolates all had the ibfA gene present in IncI1 plasmid R64. This gene inhibits growth of bacteriophage BF23 and was therefore the possible source of change of phage type. A fuller comparison of the genetic composition of IncI1 plasmids from U307 isolates and PT6 and PT6 var. 1 isolates along with two IncI1 plasmids from S. Typhimurium isolates not showing change of phage type was undertaken. Plasmids were classified as either 'Delta' or 'Col' IncI1 plasmids according to whether genes between repZ and the rfsF site showed high identity to genes in the same location in R64 or ColIb-P9 plasmids respectively. Comparison of the tra gene sets and the pil gene sets across the range of sequenced plasmids identified Delta and Col plasmids with almost identical sequences for both sets of genes. This indicated a genetic recombination event leading to a switch between Delta and Col gene sets at the rfsF site. Comparisons of other gene sets showing significant variation among the sequenced plasmids are reported. Searches of the NCBI GenBank database using DNA and protein sequences of interest from the sequenced plasmids identified global IncI1 plasmids with extensive regions showing 99 to 100% identity to some of the plasmids sequenced in this study indicating evidence for widespread distribution of these plasmids.ConclusionTwo genes possibly associated with change of phage type were identified in IncI1 plasmids. IncI1 plasmids were classified as either 'Delta' or 'Col' plasmids and other sequences of significant variation among these plasmids were identified. This study offers a new perspective on the understanding of the gene composition of IncI1 plasmids. The sequences of newly sequenced IncI1 plasmids could be compared against the regions of significant sequence variation identified in this study to understand better their overall gene composition and relatedness to other IncI1 plasmids in the databases.