Project description:OBJECTIVES:To investigate the antimicrobial resistance patterns of multidrug-resistant Acinetobacter baumannii (MDRAB) in patients in pediatric intensive care units (PICU) in order to determine a guide for the empirical antibiotic treatment of MDRAB. METHODS:The authors retrospectively evaluated the medical records of patients with MDRAB infections in the PICU during a follow-up period, between January 2015 and January 2017. The identification of A. baumannii was performed using a BD Phoenix 100 Automated Microbiology System. A BD Phoenix NMIC/ID-400 commercial kit was used to test antibiotic susceptibility. All data was entered into Microsoft Excel, and the data was analyzed using SPSS version 23.0. RESULTS:The mean age of the patients was 8.1?±?6.2 y. In all, 46 isolates were obtained from 33 patients. The most effective antimicrobial agents were colistin, trimethoprim/sulfamethoxazole, and tigecycline. Nevertheless, with the exception of colistin, no antibiotic was associated with a susceptibility rate of >45% for the isolates. Low sensitivities in 2015 to tigecycline, aminoglycosides, levofloxacin, and carbapenems had been lost in 2016. CONCLUSIONS:Many drugs that were previously effective against MDRAB, have lost their effectiveness. Currently, there is no effective drug to fight MDRAB, apart from colistin. Thus, it is clear that new drugs and treatment protocols should be developed urgently.
Project description:Here we investigated colistin effects on A. baumannii, employing a Mass spectrometry approach and comparing a colistin-susceptible multidrug-resistantclinical isolate to its colistin-dependent subpopulation obtained by subsequent passages in moderate colistin concentrations. Colistin dependence might represent a stepping-stone to resistance, but the mechanisms of colistin dependence are far from clear.
Project description:The whole-genome sequence of an epidemic, multidrug-resistant Acinetobacter baumannii strain (strain ACICU) belonging to the European clone II group and carrying the plasmid-mediated bla(OXA)(-)(58) carbapenem resistance gene was determined. The A. baumannii ACICU genome was compared with the genomes of A. baumannii ATCC 17978 and Acinetobacter baylyi ADP1, with the aim of identifying novel genes related to virulence and drug resistance. A. baumannii ACICU has a single chromosome of 3,904,116 bp (which is predicted to contain 3,758 genes) and two plasmids, pACICU1 and pACICU2, of 28,279 and 64,366 bp, respectively. Genome comparison showed 86.4% synteny with A. baumannii ATCC 17978 and 14.8% synteny with A. baylyi ADP1. A conspicuous number of transporters belonging to different superfamilies was predicted for A. baumannii ACICU. The relative number of transporters was much higher in ACICU than in ATCC 17978 and ADP1 (76.2, 57.2, and 62.5 transporters per Mb of genome, respectively). An antibiotic resistance island, AbaR2, was identified in ACICU and had plausibly evolved by reductive evolution from the AbaR1 island previously described in multiresistant strain A. baumannii AYE. Moreover, 36 putative alien islands (pAs) were detected in the ACICU genome; 24 of these had previously been described in the ATCC 17978 genome, 4 are proposed here for the first time and are present in both ATCC 17978 and ACICU, and 8 are unique to the ACICU genome. Fifteen of the pAs in the ACICU genome encode genes related to drug resistance, including membrane transporters and ex novo acquired resistance genes. These findings provide novel insight into the genetic basis of A. baumannii resistance.
Project description:In February 2006, a patient colonized with a multidrug-resistant sequence type 56 Acinetobacter baumannii strain was admitted to a hospital in Madrid, Spain. This strain spread rapidly and caused a large outbreak in the hospital. Clinicians should be alert for this strain because its spread would have serious health consequences.
Project description:The recent emergence of multidrug resistance (MDR) in Acinetobacter baumannii has raised concern in health care settings worldwide. In order to understand the repertoire of resistance determinants and their organization and origins, we compared the genome sequences of three MDR and three drug-susceptible A. baumannii isolates. The entire MDR phenotype can be explained by the acquisition of discrete resistance determinants distributed throughout the genome. A comparison of closely related MDR and drug-susceptible isolates suggests that drug efflux may be a less significant contributor to resistance to certain classes of antibiotics than inactivation enzymes are. A resistance island with a variable composition of resistance determinants interspersed with transposons, integrons, and other mobile genetic elements is a significant but not universal contributor to the MDR phenotype. Four hundred seventy-five genes are shared among all six clinical isolates but absent from the related environmental species Acinetobacter baylyi ADP1. These genes are enriched for transcription factors and transporters and suggest physiological features of A. baumannii that are related to adaptation for growth in association with humans.
Project description:This study analyzed the genotype, antibiotic resistance, and biofilm formation of Acinetobacter baumannii strains and assessed the correlation between biofilm formation, antibiotic resistance, and biofilm-related risk factors. A total of 207 non-replicate multi-drug-resistant A. baumannii strains were prospectively isolated. Phenotypic identification and antimicrobial susceptibility testing were carried out. Isolate biofilm formation ability was evaluated using the tissue culture plate (TCP), Congo red agar, and tube methods. Clonal relatedness between the strains was assessed by enterobacterial repetitive intergenic consensus-PCR genotyping. Of the 207 isolates, 52.5% originated from an intensive care unit setting, and pan resistance was observed against ceftazidime and cefepime, with elevated resistance (99-94%) to piperacillin/tazobactam, imipenem, levofloxacin, and ciprofloxacin. alongside high susceptibility to tigecycline (97.8%). The Tissue culture plate, Tube method, and Congo red agar methods revealed that 53.6%, 20.8%, and 2.7% of the strains were strong biofilm producers, respectively, while a significant correlation was observed between biofilm formation and device-originating respiratory isolates (p = 0.0009) and between biofilm formation in colonized vs. true infection isolates (p = 0.0001). No correlation was detected between antibiotic resistance and biofilm formation capacity, and the majority of isolates were clonally unrelated. These findings highlight the urgent need for implementing strict infection control measures in clinical settings.
Project description:Acinetobacter baumannii is an emerging opportunistic bacterium associated with nosocomial infections in intensive care units. The alarming increase in infections caused by A. baumannii is strongly associated with enhanced resistance to antibiotics, in particular carbapenems. This, together with the lack of a licensed vaccine, has translated into significant economic, logistic and health impacts to health care facilities. In this study, we combined reverse vaccinology and proteomics to identify surface-exposed and secreted antigens from A. baumannii. Using in silico prediction tools and comparative genome analysis in combination with in vitro proteomic approaches, we identified 42 antigens that could be used as potential vaccine targets. Considering the paucity of effective antibiotics available to treat multidrug-resistant A. baumannii infections, these vaccine targets may serve as a framework for the development of a broadly protective multi-component vaccine, an outcome that would have a major impact on the burden of A. baumannii infections in intensive care units across the globe.
Project description:Acinetobacter baumannii is a Gram-negative organism that is a cause of hospital-acquired multidrug-resistant (MDR) infections. A. baumannii has a unique cell surface compared to those of many other Gram-negative pathogens in that it can live without lipopolysaccharide (LPS) and it has a high content of cardiolipin in the outer membrane. Therefore, to better understand the cell envelope and mechanisms of MDR A. baumannii, we screened a transposon library for mutants with defective permeability barrier function, defined as a deficiency in the ability to exclude the phosphatase chromogenic substrate 5-bromo-4-chloro-3-indolylphosphate (XP). We identified multiple mutants with mutations in the ABUW_0982 gene, predicted to encode a permease broadly present in A. baumannii isolates with increased susceptibility to the ribosome-targeting antibiotic chloramphenicol (CHL). Moreover, compared to other known CHL resistance genes, such as chloramphenicol acyltransferase genes, we found that ABUW_0982 is the primary determinant of intrinsic CHL resistance in A. baumannii strain 5075 (Ab5075), an important isolate responsible for severe MDR infections in humans. Finally, studies measuring the efflux of chloramphenicol and expression of ABUW_0982 in CHL-susceptible Escherichia coli support the conclusion that ABUW_0982 encodes a single-component efflux protein with specificity for small, hydrophobic molecules, including CHL.
Project description:We report here the draft genome sequences of two clinically isolated Acinetobacter baumannii strains. These samples were obtained from patients at the University of Colorado Hospital in 2007 and 2013 and encode an estimated 20 and 13 resistance genes, respectively.
Project description:Limited treatment options are available for patients infected with multidrug (MDR)- or pan-drug (PDR)-resistant bacterial pathogens, resulting in infections that can persist for weeks or months. In order to better understand transmission and evolutionary dynamics of MDR Acinetobacter baumannii (Ab) during long-term infection, we analyzed genomes from a series of isolates from individual patients at isolate-specific, patient-specific, and population levels.Whole genome analysis of longitudinal isolates (range 2-10 isolates per patient spanning 0-829 days) from 40 patients included detection of single-nucleotide variants (SNVs), insertion sequence (IS) mapping, and gene content changes.Phylogenetic analysis revealed that a significant fraction of apparently persistent infections are in fact due to re-infection with new strains. SNVs primarily resulted in protein coding changes, and IS events primarily interrupted genes or were in an orientation such that the adjacent gene would be over-expressed. Mutations acquired during infection were over-represented in transcriptional regulators, notably pmrAB and adeRS, which can mediate resistance to the last line therapies colistin and tigecycline, respectively, as well as transporters, surface structures, and iron acquisition genes.Most SNVs and IS events were isolate-specific indicating these mutations did not become fixed on the time scale investigated, yet over-representation of independent mutations in some genes or functional categories suggests that they are under selective pressure. Genome analysis at the population-level suggests that gene transfer including recombination also contributes to Ab evolutionary dynamics. These findings provide important insight into the transmission dynamics of Ab and the identification of patients with repeat infections has implications for infection control programs targeted to this pathogen.