Unknown

Dataset Information

0

Differential activation and inhibition of RhoA by fluid flow induced shear stress in chondrocytes.


ABSTRACT: Physical force environment is a major factor that influences cellular homeostasis and remodelling. It is not well understood, however, as a potential role of force intensities in the induction of cellular mechanotransduction. Using a fluorescence resonance energy transfer-based approach, we asked whether activities of GTPase RhoA in chondrocytes are dependent on intensities of flow-induced shear stress. We hypothesized that RhoA activities can be either elevated or reduced by selecting different levels of shear-stress intensities. The result indicates that C28/I2 chondrocytes have increased RhoA activities in response to high shear stress (10 or 20?dyn/cm(2) ), whereas a decrease in activity was seen with an intermediate shear stress of 5?dyn/cm(2) . No changes were seen under low shear stress (2?dyn/cm(2) ). The observed two-level switch of RhoA activities is closely linked to the shear-stress-induced alterations in actin cytoskeleton and traction forces. In the presence of constitutively active RhoA (RhoA-V14), intermediate shear stress suppressed RhoA activities, while high shear stress failed to activate them. In chondrocytes, expression of various metalloproteinases is, in part, regulated by shear and normal stresses through a network of GTPases. Collectively, the data suggest that intensities of shear stress are critical in differential activation and inhibition of RhoA activities in chondrocytes.

SUBMITTER: Wan Q 

PROVIDER: S-EPMC3650118 | biostudies-literature | 2013 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Differential activation and inhibition of RhoA by fluid flow induced shear stress in chondrocytes.

Wan Qiaoqiao Q   Kim Seung Joon SJ   Yokota Hiroki H   Na Sungsoo S  

Cell biology international 20130313 6


Physical force environment is a major factor that influences cellular homeostasis and remodelling. It is not well understood, however, as a potential role of force intensities in the induction of cellular mechanotransduction. Using a fluorescence resonance energy transfer-based approach, we asked whether activities of GTPase RhoA in chondrocytes are dependent on intensities of flow-induced shear stress. We hypothesized that RhoA activities can be either elevated or reduced by selecting different  ...[more]

Similar Datasets

| S-EPMC9408926 | biostudies-literature
| S-EPMC8020626 | biostudies-literature
| S-EPMC5866353 | biostudies-literature
| S-EPMC7929932 | biostudies-literature
| S-EPMC10545883 | biostudies-literature
| S-EPMC8904069 | biostudies-literature
| S-EPMC5852521 | biostudies-literature
| S-EPMC9170394 | biostudies-literature
| S-EPMC3888310 | biostudies-literature
| S-EPMC7473905 | biostudies-literature