Project description:Identification of xenobiotics and their phase I/II metabolites in poisoned patients remains challenging. Systematic approaches using bioinformatic tools are needed to detect all compounds as exhaustively as possible. Here, we aimed to assess an analytical workflow using liquid chromatography coupled to high-resolution mass spectrometry with data processing based on a molecular network to identify tramadol metabolites in urine and plasma in poisoned patients. The generated molecular network from liquid chromatography coupled to high-resolution tandem mass spectrometry data acquired in both positive and negative ion modes allowed for the identification of 25 tramadol metabolites in urine and plasma, including four methylated metabolites that have not been previously reported in humans or in vitro models. While positive ion mode is reliable for generating a network of tramadol metabolites displaying a dimethylamino radical in their structure, negative ion mode was useful to cluster phase II metabolites. In conclusion, the combined use of molecular networks in positive and negative ion modes is a suitable and robust tool to identify a broad range of metabolites in poisoned patients, as shown in a fatal tramadol-poisoned patient.
Project description:Cytochrome P450 2D6 (CYP2D6) gene polymorphisms influence the exposure to tramadol (T) and its pharmacologically active metabolite, O-demethyl tramadol (O-dT). Tramadol has been considered as a candidate probe drug for CYP2D6 phenotyping. The objective of the CYTRAM study was to investigate the value of plasma O-dT/T ratio for CYP2D6 phenotyping. European adult patients who received IV tramadol after surgery were included. CYP2D6 genotyping was performed and subjects were classified as extensive (EM), intermediate (IM), poor (PM), or ultra-rapid (UM) CYP2D6 metabolizers. Plasma concentrations of tramadol and O-dT were determined at 24 h and 48 h. The relationship between O-dT/T ratio and CYP2D6 phenotype was examined in both a learning and a validation group. Genotype data were obtained in 301 patients, including 23 PM (8%), 117 IM (39%), 154 EM (51%), and 7 UM (2%). Tramadol trough concentrations at 24 h were available in 297 patients. Mean value of O-dT/T ratio was significantly lower in PM than in non-PM individuals (0.061 ± 0.031 versus 0.178 ± 0.09, p < 0.01). However, large overlap was observed in the distributions of O-dT/T ratio between groups. Statistical models based on O-dT/T ratio failed to identify CYP2D6 phenotype with acceptable sensitivity and specificity. Those results suggest that tramadol is not an adequate probe drug for CYP2D6 phenotyping.
Project description:BACKGROUND AND PURPOSE: Although tramadol is known to exhibit a local anaesthetic effect, how tramadol exerts this effect is not understood fully. EXPERIMENTAL APPROACH: The effects of tramadol and its metabolite mono-O-demethyl-tramadol (M1) on compound action potentials (CAPs) were examined by applying the air-gap method to frog sciatic nerves, and the results were compared with those of other local anaesthetics, lidocaine and ropivacaine. KEY RESULTS: Tramadol reduced the peak amplitude of the CAP in a dose-dependent manner (IC50=2.3 mM). On the other hand, M1 (1-2 mM), which exhibits a higher affinity for mu-opioid receptors than tramadol, did not affect CAPs. These effects of tramadol were resistant to the non-selective opioid receptor antagonist naloxone and the mu-opioid receptor agonist, DAMGO, did not affect CAPs. This tramadol action was not affected by a combination of the noradrenaline uptake inhibitor, desipramine, and the 5-hydroxytryptamine uptake inhibitor, fluoxetine. Lidocaine and ropivacaine also concentration-dependently reduced CAP peak amplitudes with IC50 values of 0.74 and 0.34 mM, respectively. CONCLUSIONS AND IMPLICATIONS: These results indicate that tramadol reduces the peak amplitude of CAP in peripheral nerve fibres with a potency which is less than those of lidocaine and ropivacaine, whereas M1 has much less effect on CAPs. This action of tramadol was not produced by activation of mu-opioid receptors nor by inhibition of noradrenaline and 5-hydroxytryptamine uptake. It is suggested that the methyl group present in tramadol but not in M1 may play an important role in producing nerve conduction block.
Project description:In the cation of the title co-crystal salt {systematic name: [2-hydroxy-2-(3-meth-oxy-phen-yl)cyclo-hexyl-meth-yl]dimethyl-aza-nium chloride-benzoic acid (1/1)}, C(16)H(31)NO(2) (+)·Cl(-)·C(7)H(6)O(2), the N atom is protonated and the six-membered cyclo-hexane ring adopts a slightly distorted chair conformation. The dihedral angle between the mean planes of the benzene rings in the cation and the benzoic acid mol-ecule is 75.5 (9)°. The crystal packing is stabilized by weak inter-molecular O-H⋯Cl, N-H⋯Cl and C-H⋯π inter-actions, forming a two-dimensional chain network along the b axis. The benzoic acid mol-ecule is not involved in the usual head-to-tail dimer bonding, but instead is linked to the ammonium cation through mutual hydrogen-bonding inter-actions with the chloride anion.
Project description:Predicting metabolizer phenotype (MP) is typically performed using data from a single gene. Cytochrome p450 family 2 subfamily D polypeptide 6 (CYP2D6) is considered the primary gene for predicting MP in reference to approximately 30% of marketed drugs and endogenous toxins. CYP2D6 predictions have proven clinically effective but also have well-documented inaccuracies due to relatively high genotype-phenotype discordance in certain populations. Herein, a pathway-driven predictive model employs genetic data from uridine diphosphate glucuronosyltransferase, family 1, polypeptide B7 (UGT2B7), adenosine triphosphate (ATP)-binding cassette, subfamily B, number 1 (ABCB1), opioid receptor mu 1 (OPRM1), and catechol-O-methyltransferase (COMT) to predict the tramadol to primary metabolite ratio (T:M1) and the resulting toxicologically inferred MP (t-MP). These data were then combined with CYP2D6 data to evaluate performance of a fully combinatorial model relative to CYP2D6 alone. These data identify UGT2B7 as a potentially significant explanatory marker for T:M1 variability in a population of tramadol-exposed individuals of Finnish ancestry. Supervised machine learning and feature selection were used to demonstrate that a set of 16 loci from 5 genes can predict t-MP with over 90% accuracy, depending on t-MP category and algorithm, which was significantly greater than predictions made by CYP2D6 alone.
Project description:Tramadol (Td) is a centrally acting opioid analgesic drug used for the treatment of moderate to severe pain. However, the half-life of Td is about 6-8 h, which is a major drawback. To increase the half-life of Td, it needs to be entrapped in a suitable substrate with the capability to release the drug for an extended period of time. Accordingly, in our studies, new protein blends in various compositions were prepared using hydrophilic (egg albumin) and hydrophobic (zein) proteins and fabricated them as nanoparticles with Td by the desolvation method. The prepared nanoparticles were characterized using analytical techniques. The morphology and diameter of the nanoparticles were determined by an environmental scanning electron microscope. The interactions between Td and proteins were confirmed by fluorescence spectroscopy, and the secondary structural changes were evaluated by circular dichroism. The hemolysis test and MTT assay indicated that the nanoparticles were nontoxic, and drug release studies showed an extended duration of release of Td for more than 48 h. The mechanism of the drug release followed the zero order. The overall studies inferred that these protein based nanoparticles have potential to release Td at a slow rate for an extended period of time. Further manipulation of the protein composition may regulate the duration of Td release for an effective therapy.
Project description:We evaluated pharmacokinetics (PK) and pharmacodynamics (PD) induced by new formulations of tramadol (TR) in thermoreversible gels. The poloxamer- (PL-) tramadol systems were prepared by direct dispersion of the drug in solutions with PL 407 and PL 188. The evaluated formulations were as follows: F1: TR 2% in aqueous solution and F2: PL 407 (20%) + PL 188 (10%) + TR 2%; F3: PL 407 (25%) + PL 188 (5%) + TR 2%; F4: PL 407 (20%) + TR 2%. New Zealand White rabbits were divided into four groups (n = 6) and treated by subcutaneous route with F1, F2, F3, or F4 (10 μg·kg-1). PK evaluation used TR and M1 plasma levels. PD evaluation was performed with the measurement of both pupils' diameters. F2 showed higher TR plasma concentration after 180 minutes and presented lower M1 concentrations at almost all evaluated periods. Areas under the curve (ASC0-480 and ASC0-∞ ) and clearance of F2 presented differences compared to F1. F2 presented significant correlation (Pearson correlation) between the enhancement of TR and M1 concentrations and the decrease of pupil size (miosis). Thus, F2 was effective in altering pharmacokinetics and pharmacodynamics effects of TR.